The late-stage introduction of allyl groups provides an opportunity to synthetic organic chemists for subsequent diversification, furnishing a rapid access to new chemical space. Here, we report the development of a modular synthetic sequence for the allylation of strong aliphatic C(sp)-H bonds. Our sequence features the merger of two distinct steps to accomplish this goal, including a photocatalytic Hydrogen Atom Transfer and an ensuing Horner-Wadsworth-Emmons (HWE) reaction. This practical protocol enables the modular and scalable allylation of valuable building blocks and has been applied to structurally complex molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214841 | PMC |
http://dx.doi.org/10.1039/d2sc01581a | DOI Listing |
Chem Commun (Camb)
December 2021
Department of Chemistry, Fudan University, 2005 Songhu Rd, Shanghai, 200438, China.
Chem Rev
July 2017
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, China.
Acta Crystallogr C
December 2013
Department of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama 640-8510, Japan.
The title compounds, C14H9NOS, (1), and C14H9NO2S, (2), are oxidation products of the parent compound 10-ethynyl-10H-phenothiazine. They differ with respect to transannular interactions, the intramolecular S···N contact being shorter in (2). Intermolecular Csp-H···O hydrogen bonds were detected in both crystals, and (1) was found to form stronger hydrogen bonds.
View Article and Find Full Text PDFThe direct enantiomeric resolution of non-K region trans-1,2-dihydrodiol, 1,2,3,4-tetrahydro-trans-1,2-diol, trans-3,4-dihydrodiol and 1,2,3,4-tetrahydro-trans-3,4-diol, K region trans- and cis-5,6-dihydrodiols and their monomethyl ethers of chrysene was studied by chiral stationary phase high-performance liquid chromatography (CSP-h.p.l.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!