AI Article Synopsis

  • Polymerization-induced self-assembly (PISA) is an effective method for creating self-assembled AB diblock copolymer nano-objects in water, which can be further modified through chain extension with various monomers.
  • The study explores how using poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) vesicles as seeds leads to the formation of different structures (like worms or spheres) depending on the type of polymerization and concentration.
  • This research demonstrates that incorporating a specific block (POEGMA) into the copolymer can enhance thermoresponsive properties in the resulting ABC triblock nano-objects, offering new opportunities for designing materials with customizable features.

Article Abstract

Polymerization-induced self-assembly (PISA) has been widely utilized as a powerful methodology for the preparation of various self-assembled AB diblock copolymer nano-objects in aqueous media. Moreover, it is well-documented that chain extension of AB diblock copolymer vesicles using a range of monomers seeded RAFT aqueous emulsion polymerization produces ABC triblock copolymer vesicles with adjustable surface roughness owing to microphase separation between the two enthalpically incompatible hydrophobic blocks located within their membranes. However, the utilization of monomers for the chain extension of linear diblock copolymer vesicles has yet to be thoroughly explored; this omission is addressed for aqueous PISA formulations in the present study. Herein poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) (G-H) vesicles were used as seeds for the RAFT aqueous dispersion polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA). Interestingly, this led to (PIDA), with the initial precursor vesicles being converted into lower-order worms or spheres depending on the target mean degree of polymerization (DP) for the corona-forming POEGMA block. Moreover, construction of a pseudo-phase diagram revealed an unexpected copolymer concentration dependence for this PIDA formulation. Previously, we reported that PHPMA-based diblock copolymer nano-objects only exhibit thermoresponsive behavior over a relatively narrow range of compositions and DPs (see Warren , , 2018, , 8357-8371). However, introduction of the POEGMA coronal block produced thermoresponsive ABC triblock nano-objects even when the precursor G-H diblock copolymer vesicles proved to be thermally unresponsive. Thus, this new approach is expected to enable the rational design of new nano-objects with tunable composition, copolymer architectures and stimulus-responsive behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214878PMC
http://dx.doi.org/10.1039/d2sc01611gDOI Listing

Publication Analysis

Top Keywords

diblock copolymer
20
copolymer vesicles
16
abc triblock
12
copolymer nano-objects
12
copolymer
9
polymerization-induced self-assembly
8
thermoresponsive abc
8
triblock copolymer
8
nano-objects aqueous
8
chain extension
8

Similar Publications

Development of a Cationic Polymeric Micellar Structure with Endosomal Escape Capability Enables Enhanced Intramuscular Transfection of mRNA-LNPs.

Vaccines (Basel)

December 2024

Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China.

The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol) methacrylate--hexyl methacrylate)--poly(butyl methacrylate--dimethylaminoethyl methacrylate--propyl acrylate) (p(PEGMA--HMA)--p(BMA--DMAEMA--PAA)), via reversible addition-fragmentation chain transfer polymerization.

View Article and Find Full Text PDF

Intramicellar sensor assays: Improving sensing sensitivity of sensor array for thiol biomarkers.

Biosens Bioelectron

January 2025

Liaoning Province Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang, 110036, PR China; School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, PR Singapore. Electronic address:

Array-based analysis allows for precise disease diagnosis by simultaneously detecting multiple biomarkers. However, most array sensing platforms rely on non-covalent interactions between sensors and analytes, which limits their sensitivity. This study enhances the sensitivity of array analysis for thiol biomarkers by incorporating polyion complex micelles into the sensor array design.

View Article and Find Full Text PDF

Dynamic density functional theory (DDFT) is a fruitful approach for modeling polymer dynamics, benefiting from its multiscale and hybrid nature. However, the Onsager coefficient, the only free parameter in DDFT, is primarily derived empirically, limiting the accuracy and broad application of DDFT. Herein, we propose a machine learning-based, bottom-up workflow to directly extract the Onsager coefficient from molecular simulations, circumventing partly heuristic assumptions in traditional approaches.

View Article and Find Full Text PDF

Block copolymers (BCPs) can form nanoparticles having different morphologies that can be used as photonic nanocrystals and are a platform for drug delivery, sensors, and catalysis. In particular, BCP nanoparticles having disk-like shape have been recently discovered. Such nanodisks can be used as the next-generation antitumor drug delivery carriers; however, the applicability of the existing nanodisks is limited due to their poor or unknown ability to respond to external stimuli.

View Article and Find Full Text PDF

An organomagnesium complex containing an imino-phosphanamidinate ligand was found to be a competent catalyst for the ROP of -LA and ε-CL as well as their copolymerization sequential addition of monomers, resulting in the formation of PCL--PLA diblock copolymer. The polymers obtained were characterized by H, C, DOSY NMR, DSC, TGA, POM, and SEM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!