Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: This study aimed to establish which worldwide population cohorts have a genetic make-up closest to that of a large sample of the Maltese population with regard to corneal dystrophy (CD) genes.
Methods: Single nucleotide polymorphisms (SNPs) in the Maltese cohort were compared with worldwide cohorts. Fixation index (F) values were calculated to evaluate population differentiation. The genetic prevalence of CD subtypes in worldwide and Maltese cohorts were calculated, and single nucleotide missense mutations present in the Maltese cohort were evaluated for potential pathogenicity.
Results: F values showed that CD-related genes differ substantially among the studied cohorts. F values for each SNP showed greatest differentiation between the Maltese and African cohorts and least differentiation with the Puerto Rican, Mexican, and Colombian cohorts. One TGFBI casual CD mutation, 502V, which causes a Bowman's layer CD/atypical Thiel-Behnke CD was identified in the Maltese cohort. The KRT3 NC_000012.11:g.53186088G>C mutation was potentially deleterious.
Conclusion: Identifying populations with least genetic differentiation can facilitate and help guide future diagnostic and treatment strategies for Maltese individuals with CDs in the absence of comparable Maltese data. Analysing the previously unknown CD genetic pool present in a large Maltese cohort adds to the global genetic bank that researchers rely on for medical progress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40291-022-00602-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!