Smooth muscle protein 22α-Cre recombination in resting cardiac fibroblasts and hematopoietic precursors.

Sci Rep

Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.

Published: July 2022

The Cre-loxP system has been widely used for cell- or organ-specific gene manipulation, but it is important to precisely understand what kind of cells the recombination takes place in. Smooth muscle 22α (SM22α)-Cre mice have been utilized to alter genes in vascular smooth muscle cells (VSMCs), activated fibroblasts or cardiomyocytes (CMs). Moreover, previous reports indicated that SM22α-Cre is expressed in adipocytes, platelets or myeloid cells. However, there have been no report of whether SM22α-Cre recombination takes place in nonCMs in hearts. Thus, we used the double-fluorescent Cre reporter mouse in which GFP is expressed when recombination occurs. Immunofluorescence analysis demonstrated that recombination occurred in resting cardiac fibroblasts (CFs) or macrophages, as well as VSMCs and CMs. Flow cytometry showed that some CFs, resident macrophages, neutrophils, T cells, and B cells were positive for GFP. These results prompted us to analyze bone marrow cells, and we observed GFP-positive hematopoietic precursor cells (HPCs). Taken together, these results indicated that SM22α-Cre-mediated recombination occurs in resting CFs and hematopoietic cell lineages, including HPCs, which is a cautionary point when using SM22α-Cre mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9263136PMC
http://dx.doi.org/10.1038/s41598-022-15957-2DOI Listing

Publication Analysis

Top Keywords

smooth muscle
12
resting cardiac
8
cardiac fibroblasts
8
recombination takes
8
takes place
8
sm22α-cre mice
8
recombination occurs
8
cells
7
recombination
6
muscle protein
4

Similar Publications

Background: In male patients, benign prostate hyperplasia (BPH) and overactive bladder (OAB) secondary to BPH are the primary causes of Lower Urinary Tract Symptoms (LUTS). Recent clinical studies have reported an increased risk of LUTS, particularly severe LUTS conditions, in male asthmatic patients. However, the potential link and mechanism remain unclear.

View Article and Find Full Text PDF

A balanced activity of cGMP signaling contributes to the maintenance of cardiovascular homeostasis. Vascular smooth muscle cells (VSMCs) can generate cGMP via three ligand-activated guanylyl cyclases, the NO-sensitive guanylyl cyclase, the atrial natriuretic peptide (ANP)-activated GC-A, and the C-type natriuretic peptide (CNP)-stimulated GC-B. Here, we study natriuretic peptide signaling in murine VSMCs and atherosclerotic lesions.

View Article and Find Full Text PDF

Stay connected: The myoendothelial junction proteins in vascular function and dysfunction.

Vascul Pharmacol

January 2025

Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy. Electronic address:

The appropriate regulation of peripheral vascular tone is crucial for maintaining tissue perfusion. Myoendothelial junctions (MEJs), specialized connections between endothelial cells and vascular smooth muscle cells, are primarily located in peripheral resistance vessels. Therefore, these junctions, with their key membrane proteins, play a pivotal role in the physiological control of relaxation-contraction coupling in resistance arterioles, mainly mediated through endothelium-derived hyperpolarization (EDH).

View Article and Find Full Text PDF

1,8-Cineole reduces pulmonary vascular remodelling in pulmonary arterial hypertension by restoring intercellular communication and inhibiting angiogenesis.

Phytomedicine

December 2024

Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, Coimbra 3000-548, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.

Background: Pulmonary Arterial Hypertension (PAH) is characterized by pulmonary vascular remodelling, often associated with disruption of BMPR2/Smad1/5 and BMPR2/PPAR-γ signalling pathways that ultimately lead to right ventricle failure. Disruption of intercellular junctions and communication and a pro-angiogenic environment are also characteristic features of PAH. Although, current therapies improve pulmonary vascular tone, they fail to tackle other key pathological features that could prevent disease progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!