Dual cytoplasmic-peroxisomal engineering for high-yield production of sesquiterpene α-humulene in Yarrowia lipolytica.

Biotechnol Bioeng

School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Qixia District, Nanjing, People's Republic of China.

Published: October 2022

The sesquiterpene α-humulene is an important plant natural product, which has been used in the pharmaceutical industry due to its anti-inflammatory and anticancer activities. Although phytoextraction and chemical synthesis have previously been applied in α-humulene production, the low efficiency and high costs limit the development. In this study, Yarrowia lipolytica was engineered as the robust cell factory for sustainable α-humulene production. First, a chassis with high α-humulene output in the cytoplasm was constructed by integrating α-humulene synthases with high catalytic activity, optimizing the flux of mevalonate and acetyl-CoA pathways. Subsequently, the strategy of dual cytoplasmic-peroxisomal engineering was adopted in Y. lipolytica; the best strain GQ3006 generated by introducing 31 copies of 12 different genes could produce 2280.3± 38.2 mg/l (98.7 ± 4.2 mg/g dry cell weight) α-humulene, a 100-fold improvement relative to the baseline strain. To further improve the titer, a novel strategy for downregulation of squalene biosynthesis based on Cu -repressible promoters was firstly established, which significantly improved the α-humulene titer by 54.2% to 3516.6 ± 34.3 mg/l. Finally, the engineered strain could produce 21.7 g/l α-humulene in a 5-L bioreactor, 6.8-fold higher than the highest α-humulene titer reported before this study. Overall, system metabolic engineering strategies used in this study provide a valuable reference for the highly sustainable production of terpenoids in Y. lipolytica.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.28176DOI Listing

Publication Analysis

Top Keywords

α-humulene
9
dual cytoplasmic-peroxisomal
8
cytoplasmic-peroxisomal engineering
8
sesquiterpene α-humulene
8
yarrowia lipolytica
8
α-humulene titer
8
engineering high-yield
4
production
4
high-yield production
4
production sesquiterpene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!