A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Maternal exome analysis for the diagnosis of oocyte maturation defects and early embryonic developmental arrest. | LitMetric

AI Article Synopsis

  • The research aimed to find a way to help women who have trouble becoming pregnant due to issues with their eggs and embryo development.
  • The study looked at a large number of IVF patients and analyzed their genetic information to find unique genetic changes that could cause these fertility problems.
  • They discovered specific genes linked to the issues and even found new connections that could help scientists understand and possibly help treat these fertility challenges.

Article Abstract

Research Question: Can a methodology be developed for case selection and whole-exome sequencing (WES) analysis of women who are infertile owing to recurrent oocyte maturation defects (OOMD) and/or preimplantation embryo lethality (PREMBL)?

Design: Data were collected from IVF patients attending the Istanbul Memorial Hospital (2015-2021). A statistical methodology to identify infertile endophenotypes (recurrent low oocyte maturation rate, low fertilization rate and preimplantation developmental arrest) was developed using a large IVF dataset (11,221 couples). Twenty-eight infertile women with OOMD/PREMBL were subsequently enrolled for WES on their genomic DNA. Pathogenic variants were prioritized using a custom-made bioinformatic pipeline set to minimize false-positive discoveries through resampling in control cohorts (the Human Genome Diversity Project and 1343 whole-exome sequences from oocyte donors). Individual single-cell RNA sequencing data from 18 human metaphase II (MII) oocytes and antral granulosa cells was used for genome-wide validation. WES and bioinformatics were performed at Igenomix and the National Research Council, Italy.

Results: Variant prioritization analysis identified 265 unique variants in 248 genes (average 22.4 per sample). Of the genes harbouring high-impact variants 78% were expressed by MII oocytes and/or antral granulosa cells, significantly higher than for random sample of controls (odds ratio = 5, Fisher's exact P = 0.0004). Seven of the 28 women (25%) were homozygous carriers of missense pathogenic variants in known candidate genes for OOMD/PREMBL, including PATL2, NLRP5 (n = 2),TLE6, PADI6, TUBB8 and TRIP13. Furthermore, novel gene-disease associations were identified. In fact, one woman with a low oocyte maturation rate was a homozygous carrier of high-impact variants in ENSA, an essential gene for prophase I meiotic transition in mice.

Conclusions: This analytical framework could reveal known and new genes associated with isolated recurrent OOMD/PREMBL, providing essential indications for scaling this strategy to larger studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rbmo.2022.05.009DOI Listing

Publication Analysis

Top Keywords

oocyte maturation
16
maturation defects
8
developmental arrest
8
low oocyte
8
maturation rate
8
pathogenic variants
8
mii oocytes
8
antral granulosa
8
granulosa cells
8
high-impact variants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!