Background: Direct assessment of the coronary microcirculation has long been hampered by the limited spatial and temporal resolutions of cardiac imaging modalities.
Objectives: The purpose of this study was to demonstrate 3-dimensional (3D) coronary ultrasound localization microscopy (CorULM) of the whole heart beyond the acoustic diffraction limit (<20 μm resolution) at ultrafast frame rate (>1000 images/s).
Methods: CorULM was performed in isolated beating rat hearts (N = 6) with ultrasound contrast agents (Sonovue, Bracco), using an ultrasonic matrix transducer connected to a high channel-count ultrafast electronics. We assessed the 3D coronary microvascular anatomy, flow velocity, and flow rate of beating hearts under normal conditions, during vasodilator adenosine infusion, and during coronary occlusion. The coronary vasculature was compared with micro-computed tomography performed on the fixed heart. In vivo transthoracic CorULM was eventually assessed on anaesthetized rats (N = 3).
Results: CorULM enables the 3D visualization of the coronary vasculature in beating hearts at a scale down to microvascular structures (<20 μm resolution). Absolute flow velocity estimates range from 10 mm/s in tiny arterioles up to more than 300 mm/s in large arteries. Fitting to a power law, the flow rate-radius relationship provides an exponent of 2.61 (r = 0.96; P < 0.001), which is consistent with theoretical predictions and experimental validations of scaling laws in vascular trees. A 2-fold increase of the microvascular coronary flow rate is found in response to adenosine, which is in good agreement with the overall perfusion flow rate measured in the aorta (control measurement) that increased from 8.80 ± 1.03 mL/min to 16.54 ± 2.35 mL/min (P < 0.001). The feasibility of CorULM was demonstrated in vivo for N = 3 rats.
Conclusions: CorULM provides unprecedented insights into the anatomy and function of coronary arteries at the microvasculature level in beating hearts. This new technology is highly translational and has the potential to become a major tool for the clinical investigation of the coronary microcirculation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcmg.2022.02.008 | DOI Listing |
Chaos
January 2025
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.
Arrhythmia of the heart is a dangerous and potentially fatal condition. The current widely used treatment is the implantable cardioverter defibrillator (ICD), but it is invasive and affects the patient's quality of life. The sonogenetic mechanism proposed here focuses ultrasound on a cardiac tissue, controls endogenous stretch-activated Piezo1 ion channels on the focal region's cardiomyocyte sarcolemma, and restores normal heart rhythm.
View Article and Find Full Text PDFEur Radiol Exp
January 2025
Laboratory of Molecular Imaging, Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
Background: We examined chronic gadolinium retention impact on gene expression in the mouse central nervous system (CNS) after injection of linear or macrocyclic gadolinium-based contrast agents (GBCAs).
Methods: From 05/2022 to 07/2023, 36 female mice underwent weekly intraperitoneal injections of gadodiamide (2.5 mmol/kg, linear), gadobutrol (2.
Cells
December 2024
Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100054, China.
Neurovascular coupling (NVC) refers to the process of local changes in cerebral blood flow (CBF) after neuronal activity, which ensures the timely and adequate supply of oxygen, glucose, and substrates to the active regions of the brain. Recent clinical imaging and experimental technology advancements have deepened our understanding of the cellular mechanisms underlying NVC. Pathological conditions such as stroke, subarachnoid hemorrhage, cerebral small vascular disease, and vascular cognitive impairment can disrupt NVC even before clinical symptoms appear.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Center for MR Research, University Children's Hospital Zurich, Zurich, Switzerland.
The human brain connectome is characterized by the duality of highly modular structure and efficient integration, supporting information processing. Newborns with congenital heart disease (CHD), prematurity, or spina bifida aperta (SBA) constitute a population at risk for altered brain development and developmental delay (DD). We hypothesize that, independent of etiology, alterations of connectomic organization reflect neural circuitry impairments in cognitive DD.
View Article and Find Full Text PDFJ Hypertens
December 2024
Department of Ultrasound Medicine, Tangdu Hospital, Air Force Medical University.
Background: The arterial stiffening is attributed to the intrinsic structural stiffening and/or load-dependent stiffening by increased blood pressure (BP). The respective lifetime alterations and major determinants of the two components with normal aging are not clear.
Methods: A total of 3053 healthy adults (1922 women) aged 18-79 years were enrolled.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!