A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiscale Engineering of Nonprecious Metal Electrocatalyst for Realizing Ultrastable Seawater Splitting in Weakly Alkaline Solution. | LitMetric

Seawater electrolysis is an attractive technique for mass production of high-purity hydrogen considering the abundance of seawater. Nevertheless, due to the complexity of seawater environment, efficient anode catalyst, that should be, cost effective, highly active for oxygen evolution reaction (OER) but negligible for Cl /ClO formation, and robust toward chlorine corrosion, is urgently demanded for large-scale application. Although catalysis typically appears at surface, while the bulk properties and morphology structure also have a significant impact on the performance, thus requiring a systematic optimization. Herein, a multiscale engineering approach toward the development of cost-effective and robust OER electrocatalyst for operation in seawater is reported. Specifically, the engineering of hollow-sphere structure can facilitate the removal of gas product, while atom-level synergy between Co and Fe can promote Co sites transforming to active phase, and in situ transformation of sulfate ions layer protects catalysts from corrosion. As a result, the as-developed hollow-sphere structured CoFeS electrocatalyst can stably operate at a high current density of 100 mA cm in the alkaline simulated seawater (pH = 13) for 700 h and in a neutral seawater for 20 h without attenuation. It provides a new strategy for the development of electrocatalysts with a broader application potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9443442PMC
http://dx.doi.org/10.1002/advs.202202387DOI Listing

Publication Analysis

Top Keywords

multiscale engineering
8
seawater
7
engineering nonprecious
4
nonprecious metal
4
metal electrocatalyst
4
electrocatalyst realizing
4
realizing ultrastable
4
ultrastable seawater
4
seawater splitting
4
splitting weakly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!