The quiescent/slow-cycling state preserves the self-renewal capacity of cancer stem cells (CSCs) and leads to the therapy resistance of CSCs. The mechanisms maintaining CSCs quiescence remain largely unknown. Here, it is demonstrated that lower expression of MAN1A1 in glioma stem cell (GSC) resulted in the formation of high-mannose type N-glycan on CD133. Furthermore, the high-mannose type N-glycan of CD133 is necessary for its interaction with DNMT1. Activation of p21 and p27 by the CD133-DNMT1 interaction maintains the slow-cycling state of GSC, and promotes chemotherapy resistance and tumorigenesis of GSCs. Elimination of the CD133-DNMT1 interaction by a cell-penetrating peptide or MAN1A1 overexpression inhibits the tumorigenesis of GSCs and increases the sensitivity of GSCs to temozolomide. Analysis of glioma samples reveals that the levels of high-mannose type N-glycan are correlated with glioma recurrence. Collectively, the high mannose CD133-DNMT1 interaction maintains the slow-cycling state and tumorigenic potential of GSC, providing a potential strategy to eliminate quiescent GSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9475542 | PMC |
http://dx.doi.org/10.1002/advs.202202216 | DOI Listing |
Int J Mol Sci
November 2024
Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
Melanoma is an aggressive cancer characterized by rapid growth, early metastasis, and poor prognosis, with resistance to current therapies being a significant issue. BRAF mutations drive uncontrolled cell division by activating the MAPK pathway. In this study, A375 and FO-1, BRAF-mutated melanoma cell lines, were treated for 4-5 months with RAF inhibitor dabrafenib or AZ628, leading to drug resistance over time.
View Article and Find Full Text PDFJ Clin Invest
October 2024
Department of Dermatology.
Epidermal stem cells control homeostasis and regeneration of skin and hair. In the hair follicle (HF) bulge of mammals, populations of slow-cycling stem cells regenerate the HF during cyclical rounds of anagen (growth), catagen (regression), and telogen (quiescence). Multipotent epidermal cells are also present in the HF above the bulge area, contributing to the formation and maintenance of sebaceous gland and upper and middle portions of the HF.
View Article and Find Full Text PDFJ Bone Miner Res
October 2024
Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, United States.
The resting zone (RZ) in mammalian growth plates is critical for maintaining and regulating chondrocyte turnover during longitudinal bone growth as a control tower and stem cell reservoir. Although recent lineage tracing studies have identified several markers for stem cells in the RZ, these markers only partially label chondrocytes in the RZ, suggesting that the resting chondrocytes (RCs) are a heterogeneous population with different types of stem cells. Since a comprehensive marker for RCs is still lacking, the RZ is generally determined based on ambiguous histological criteria, such as small and round chondrocytes without columnar formation, which may lead to inconsistencies among researchers.
View Article and Find Full Text PDFMol Oncol
October 2024
State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
Persistence of quiescent leukemia stem cells (LSCs) after treatment most likely contributes to chemotherapy resistance and poor prognosis of leukemia patients. Identification of this quiescent cell population would facilitate eradicating LSCs. Here, using a cell-tracing PKH26 (PKH) dye that can be equally distributed to daughter cells following cell division in vivo, we identify a label-retaining slow-cycling leukemia cell population from AML1-ETO9a (AE9a) leukemic mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!