Stimuli-responsive supercapacitors have attracted broad interest in constructing self-powered smart devices. However, due to the demand for high cyclic stability, supercapacitors usually utilize stable or inert electrode materials, which are difficult to exhibit dynamic or stimuli-responsive behavior. Herein, this issue is addressed by designing a MoS @carbon core-shell structure with ultrathin MoS nanosheets incorporated in the carbon matrix. In the three-electrode system, MoS @carbon delivers a specific capacitance of 1302 F g at a current density of 1.0 A g and shows a 90% capacitance retention after 10 000 charging-discharging cycles. The MoS @carbon-based asymmetric supercapacitor displays an energy density of 75.1 Wh kg at the power density of 900 W kg . Because the photo-generated electrons can efficiently migrate from MoS nanosheets to the carbon matrix, the assembled photo-responsive supercapacitor can answer the stimulation of ultraviolet-visible-near infrared illumination by increasing the capacitance. Particularly, under the stimulation of UV light (365 nm, 0.08 W cm ), the device exhibits a ≈4.50% (≈13.9 F g ) increase in capacitance after each charging-discharging cycle. The study provides a guideline for designing multi-functional supercapacitors that serve as both the energy supplier and the photo-detector.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404387 | PMC |
http://dx.doi.org/10.1002/advs.202201685 | DOI Listing |
Small
January 2025
Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India.
Increasing attention to sustainability and cost-effectiveness in energy storage sector has catalyzed the rise of rechargeable Zinc-ion batteries (ZIBs). However, finding replacement for limited cycle-life Zn-anode is a major challenge. Molybdenum disulfide (MoS), an insertion-type 2D layered material, has shown promising characteristics as a ZIB anode.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering and Information Sciences, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
J Colloid Interface Sci
December 2024
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China. Electronic address:
Photocatalytic removal of antibiotic such as ciprofloxacin from polluted water is of great value for eco-environment protection. To further enhance the piezoelectric effect in photocatalysis, we designed and synthesized a ternary heterojunction piezoelectric photocatalyst through uniformly loading MoS nanosheets onto BiFeO (BFO) nanofibers, namely MoS/BiS/BFO. Piezoresponse force microscopy and Kelvin probe force microscopy demonstrated its enhanced piezoelectric properties, showing a maximum amplitude displacement of 395.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India.
Cardiovascular disease is the primary cause of mortality worldwide, as stated by the World Health Organization. We utilized the red fluorescence emitted by copper nanoclusters (CuNCs) to detect cardiac Troponin T (cTnT). We designed a fluorescent probe to detect cTnT using an on-off-on technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!