Tumor Cells Modulate Macrophage Phenotype in a Novel In Vitro Co-Culture Model of the NSCLC Tumor Microenvironment.

J Thorac Oncol

Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas; Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas. Electronic address:

Published: October 2022

Introduction: Macrophage phenotype in the tumor microenvironment correlates with prognosis in NSCLC. Immunosuppressive macrophages promote tumor progression, whereas proinflammatory macrophages may drive an antitumor immune response. How individual NSCLCs affect macrophage phenotype is a major knowledge gap.

Methods: To systematically study the impact of lung cancer cells on macrophage phenotypes, we developed an in vitro co-culture model that consisted of molecularly and clinically annotated patient-derived NSCLC lines, human cancer-associated fibroblasts, and murine macrophages. Induced macrophage phenotype was studied through quantitative real-time polymerase chain reaction and validated in vivo using NSCLC xenografts through quantitative immunohistochemistry and clinically with The Cancer Genome Atlas (TCGA)-"matched" patient tumors.

Results: A total of 72 NSCLC cell lines were studied. The most frequent highly induced macrophage-related gene was Arginase-1, reflecting an immunosuppressive M2-like phenotype. This was independent of multiple clinicopathologic factors, which also did not affect M2:M1 ratios in matched TCGA samples. In vivo, xenograft tumors established from high Arginase-1-inducing lines (Arg) had a significantly elevated density of Arg1+ macrophages. Matched TCGA clinical samples to Arg NSCLC lines had a significantly higher ratio of M2:M1 macrophages (p = 0.0361).

Conclusions: In our in vitro co-culture model, a large panel of patient-derived NSCLC lines most frequently induced high-expression Arginase-1 in co-cultured mouse macrophages, independent of major clinicopathologic and oncogenotype-related factors. Arg cluster-matched TCGA tumors contained a higher ratio of M2:M1 macrophages. Thus, this in vitro model reproducibly characterizes how individual NSCLC modulates macrophage phenotype, correlates with macrophage polarization in clinical samples, and can serve as an accessible platform for further investigation of macrophage-specific therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529910PMC
http://dx.doi.org/10.1016/j.jtho.2022.06.011DOI Listing

Publication Analysis

Top Keywords

macrophage phenotype
20
in vitro co-culture
12
co-culture model
12
nsclc lines
12
nsclc
8
tumor microenvironment
8
patient-derived nsclc
8
matched tcga
8
clinical samples
8
higher ratio
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!