Membrane biological reactors (MBR) constitute an alternative to conventional wastewater treatments for improved recovery, reuse, and recycling of water. MBRs have a smaller footprint, provide better biotreatment and achieve a high-quality effluent. This work analyses the use of MBRs innovative low-cost ceramic membranes for wastewater treatment. We propose low-cost ceramic membranes as an alternative to the more expensive commercial ceramic membranes. Low-cost membranes were made of clay, calcium carbonate, potato starch, almond shell and chamotte. We synthesized two different selective layers, from clay and/or TiO. We characterized the membranes (pore diameter and water permeance) and their performance in a laboratory scale MBR. To mitigate membrane fouling and preserve the continued operation along time, the effect of different operating cycles was measured, considering two physical cleaning strategies: relaxation and backwashing. Cycles of 9 min of operation, 30 s of relaxation and 1 min of backwashing provided the lowest fouling rate. We investigated the effect of air scouring on fouling by operating with different air flow rates. Once experimental conditions were optimized, the overall performance of the different ceramic membranes was tested. The membrane with a TiO thin layer provided the best resistance to fouling, as well as a good retention capacity of E. coli, Cryptosporidium oocysts and Giardia cysts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135587DOI Listing

Publication Analysis

Top Keywords

ceramic membranes
16
low-cost ceramic
12
membranes
6
fouling
5
low-cost
4
membrane
4
ceramic membrane
4
membrane bioreactor
4
bioreactor backwashing
4
backwashing relaxation
4

Similar Publications

Synergistic Atomic Environment Optimization of Nickel-Iron Dual Sites by Co Doping and Cr Vacancy for Electrocatalytic Oxygen Evolution.

J Am Chem Soc

January 2025

School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China.

The dual-site synergistic catalytic mechanism on NiFeOOH suggests weak adsorption of Ni sites and strong adsorption of Fe sites limited its activity toward alkaline oxygen evolution reaction (OER). Large-scale density functional theory (DFT) calculations confirm that Co doping can increase Ni adsorption, while the metal vacancy can reduce Fe adsorption. The combined two factors can further modulate the atomic environment and optimize the free energy toward oxygen-containing intermediates, thus enhancing the OER activity.

View Article and Find Full Text PDF

Revolutionizing Methane Transformation with the Dual Production of Aromatics and Electricity in a Protonic Ceramic Electrocatalytic Membrane Reactor.

ACS Appl Mater Interfaces

January 2025

Department of Hydrogen and Electrochemistry, Idaho National Laboratory, Idaho Falls, ID 83415, United States.

Article Synopsis
  • Using a protonic ceramic electrocatalytic membrane reactor, methane is converted into higher-value chemicals like benzene with high efficiency and minimal emissions.
  • The system achieved a 15.6% methane conversion rate and an 11.4% benzene yield, which outperform traditional thermochemical methods by 15.7% and 16.0%, respectively.
  • The reactor also effectively removes hydrogen, maintaining stable operation for 45 hours and allowing for catalyst regeneration, presenting a promising solution for reducing carbon impact in chemical processing.
View Article and Find Full Text PDF

TiO-ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light.

Discov Nano

January 2025

Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.

Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method.

View Article and Find Full Text PDF

Submerged membrane bioreactor (SMBR) is a promising technology in municipal wastewater treatment, but the membrane fouling has restricted its development. In this study, an integrated submerged ceramic membrane bioreactor (C-SMBR) was constructed to treat domestic wastewater, and the characteristics of membrane fouling and the microbial community structure were investigated. The results showed that the average removal efficiencies of COD, TN, NH-N reached 94.

View Article and Find Full Text PDF

The development of affordable ceramic membranes is essential for reducing expenses and optimizing the treatment of oily wastewater. There is an urgent demand for membranes that are not only affordable and easy to operate but also stable and capable of managing high fluxes to address the increasing volumes of oily wastewater. The significant production demands associated with many commercially available ceramic membranes, primarily due to the use of specialised raw materials and intricate processing methods, limiting their suitability for many wastewater treatment applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!