Elastin turnover in ocular diseases: A special focus on age-related macular degeneration.

Exp Eye Res

Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA. Electronic address:

Published: September 2022

The extracellular matrix (ECM) and its turnover play a crucial role in the pathogenesis of several inflammatory diseases, including age-related macular degeneration (AMD). Elastin, a critical protein component of the ECM, not only provides structural and mechanical support to tissues, but also mediates several intracellular and extracellular molecular signaling pathways. Abnormal turnover of elastin has pathological implications. In the eye elastin is a major structural component of Bruch's membrane (BrM), a critical ECM structure separating the retinal pigment epithelium (RPE) from the choriocapillaris. Reduced integrity of macular BrM elastin, increased serum levels of elastin-derived peptides (EDPs), and elevated elastin antibodies have been reported in AMD. Existing reports suggest that elastases, the elastin-degrading enzymes secreted by RPE, infiltrating macrophages or neutrophils could be involved in BrM elastin degradation, thus contributing to AMD pathogenesis. EDPs derived from elastin degradation can increase inflammatory and angiogenic responses in tissues, and the elastin antibodies are shown to play roles in immune cell activity and complement activation. This review summarizes our current understanding on the elastases/elastin fragments-mediated mechanisms of AMD pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795808PMC
http://dx.doi.org/10.1016/j.exer.2022.109164DOI Listing

Publication Analysis

Top Keywords

elastin
9
age-related macular
8
macular degeneration
8
brm elastin
8
elastin antibodies
8
elastin degradation
8
amd pathogenesis
8
elastin turnover
4
turnover ocular
4
ocular diseases
4

Similar Publications

Aneurysm rupture is a life-threatening event, yet its underlying mechanisms remain largely unclear. This study investigated the fracture properties of the thoracic aneurysmatic aorta (TAA) using the symmetry-constraint Compact Tension (symconCT) test and compared results to native and enzymatic-treated porcine aortas' tests. With age, the aortic stiffness increased, and tissues ruptured at lower fracture energy [Formula: see text].

View Article and Find Full Text PDF

Background: Stiffening of the large arteries is a hallmark feature of vascular aging and is associated with cognitive impairment and Alzheimer's disease pathology. Increased large artery stiffness leads to higher-than-normal pulse pressure in the cerebral circulation, damaging endothelial cells. It is known that short-term exposure to stiffer large arteries causes cerebral artery endothelial dysfunction and hypoperfusion in young mice.

View Article and Find Full Text PDF

Cysteinyl leukotrienes (LTs) and their receptors are involved in the pathogenesis of abdominal aortic aneurysms (AAAs). However, whether CysLT1 receptor antagonists such as montelukast can influence experimental nondissecting AAA remains unclear. Nondissecting AAAs were induced in C57BL/6J mice by transient aortic luminal infusion of porcine pancreatic elastase (PPE).

View Article and Find Full Text PDF

The A-Z of age-related dermatological diseases.

Br J Community Nurs

January 2025

Freelance medical writer and journalist.

Skin ageing is an inevitable process influenced by both intrinsic and extrinsic factors. Intrinsic aging leads to thinner, drier and less elastic skin with fine wrinkles, while extrinsic factors such as sun exposure, smoking and environmental stresses amplify these changes. Photo-ageing, in particular, causes deep wrinkles, uneven pigmentation and increases the risk of skin cancers.

View Article and Find Full Text PDF

Small spheroids for head and neck cartilage tissue engineering.

Sci Rep

December 2024

Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

The demand for cartilage reconstruction in the head and neck region arises frequently due to trauma, malignancies, and hereditary diseases. Traditional tissue engineering produces cartilage from a small biopsy by combining biomaterials and expanded cells. However, this top-down approach is associated with several limitations, including the non-uniform distribution of cells, lack of physiological cell-cell and cell-matrix interactions, and compromised mechanical properties and tissue architecture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!