A prototype lateral flow assay for detection of orthopoxviruses.

Lancet Infect Dis

Pandemic Sciences Institute, Nuffield Department of Medicine, Oxford University, Oxford OX3 7BN, UK. Electronic address:

Published: September 2022

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1473-3099(22)00440-6DOI Listing

Publication Analysis

Top Keywords

prototype lateral
4
lateral flow
4
flow assay
4
assay detection
4
detection orthopoxviruses
4
prototype
1
flow
1
assay
1
detection
1
orthopoxviruses
1

Similar Publications

Tick-borne spotted fever rickettsioses (SFRs) continue to cause severe illness and death in otherwise-healthy individuals due to lack of a timely and reliable diagnostic laboratory test. We recently identified a diagnostic biomarker for SFRs, the putative N-acetylmuramoyl-l-alanine amidase RC0497. Here, we developed a prototype laboratory test that targets RC0497 for diagnosis of SFRs.

View Article and Find Full Text PDF

Development of lateral flow immunochromatographic assay with Anti-Pythium insidiosum antibodies for point-of-care testing of vascular pythiosis.

Sci Rep

January 2025

Center of Excellence for Antimicrobial Resistance and Stewardship, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.

The pathogenic oomycete Pythium insidiosum causes a fatal infectious illness known as pythiosis, impacting humans and certain animals in numerous countries in the tropics and subtropics. Delayed diagnosis is a primary factor contributing to the heightened morbidity and mortality associated with the disease. Several new serodiagnostic methods have been developed to improve the identification of pythiosis.

View Article and Find Full Text PDF

The Protection of RC Columns by Bio-Inspired Honeycomb Column Thin-Walled Structure (BHTS) Under Impact Load.

Biomimetics (Basel)

December 2024

Heilongjiang Construction Investment Group Co., Ltd., Harbin 150046, China.

The bio-inspired honeycomb column thin-walled structure (BHTS) is inspired by the biological structure of beetle elytra and designed as a lightweight buffer interlayer to prevent damage to the reinforced concrete bridge pier (RCBP) under the overload impact from vehicle impact. According to the prototype structure of the pier, a batch of scale models with a scaling factor of 1:10 was produced. The BHTS buffer interlayer was installed on the reinforced concrete (RC) column specimen to carry out the steel ball impact test.

View Article and Find Full Text PDF

Vaginal Orthosis After Native Tissue Reconstructive Surgery: Design and Phase 0.

Urogynecology (Phila)

December 2024

From the Division of Urogynecology and Reconstructive Pelvic Surgery, University of Alabama at Birmingham, Birmingham, AL.

Importance: Pelvic organ prolapse recurrence following native tissue repair occurs with composite failure rates of 9-19% within 12 months, predominantly involving apical/anterior compartments. Objective The objective of this study was to develop a novel vaginal orthosis (NVO) device prototype through an iterative design process based on investigator and user feedback.

Study Design: The NVO was designed based on pelvic floor biomechanical principles to mitigate unopposed intra-abdominal pressure of the anterior vagina by absorbing and redirecting intra-abdominal forces to the levator ani and tailored to accommodate postoperative vaginal caliber and axis.

View Article and Find Full Text PDF

Background: Stroke is the leading cause of acquired motor deficiencies in adults. Restoring prehension abilities is challenging for individuals who have not recovered active hand opening capacities after their rehabilitation. Self-triggered functional electrical stimulation applied to finger extensor muscles to restore grasping abilities in daily life is called grasp neuroprosthesis (GNP) and remains poorly accessible to the post-stroke population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!