The drugs most commonly used in the treatment of osteoporosis are bisphosphonates. This disease results in low mineral density and a weakened bone microstructure. The delivery methods for these drugs have many disadvantages, and new ones are being searched for. In this work, biocompatible zinc titanate coated titanium implants were obtained as potential new carriers for drugs. Such a material will release the drug, and it will have antibacterial properties. Gradual release of the bisphosphonate will have a positive effect on the recovery process and osteointegration. In addition, the drug will be released around the affected bones. The effectiveness of the modification and attachment of the drug was confirmed by SEM, XPS, EDS, FT-IR imaging, and UV-VIS. It was shown that the risedronate could be almost completely released upon contact with body fluids within a week. The drug is evenly distributed over the entire surface of the alloy as confirmed by FT-IR imaging. The results presented in this work will allow for the preparation of endoprostheses that release the drug and have antibacterial properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121575DOI Listing

Publication Analysis

Top Keywords

ft-ir imaging
12
zinc titanate
8
release drug
8
drug will
8
antibacterial properties
8
drug
6
will
5
drug distribution
4
distribution evaluation
4
evaluation ft-ir
4

Similar Publications

Nano metakaolin (NMK) has attracted considerable interest for its potential to improve the durability of cementitious materials. However, the effect of NMK on the splitting tensile performance of concrete has not been systematically investigated. This study investigates the splitting tensile performance of NMK concrete and analyzes its failure behavior under splitting load.

View Article and Find Full Text PDF

A series of colorful binuclear Schiff bases derived from the different diamine bridges including 1,2- ethylenediamine (bis-Et-SA, bis-Et-4-NEt, bis-Et-5-NO, bis-Et-Naph), 1,2-phenylenediamine (bis-Ph-SA, bis-Ph-4-NEt, bis-Ph-5-NO, bis-Ph-Naph), dicyano-1,2-ethenediamine (bis-CN-SA, bis-CN-4-NEt, bis-CN-5-NO, bis-CN-Naph) have been designed and prepared. The optical properties of these binuclear Schiff base ligands were fully determined by UV-Vis absorption spectroscopy, fluorescence emission spectroscopy, and time-dependent-density functional theory (TD-DFT) calculations. The inclusion of D-A systems and/or π-extended systems in these binuclear Schiff base ligands not only enables adjustable RGB light absorption and emission spectra (300~700 nm) but also yields high fluorescence quantum efficiencies of up to 0.

View Article and Find Full Text PDF
Article Synopsis
  • A magnetic carboxymethylated β-cyclodextrin (Mag/CM-β-CD) was created as a drug delivery system, forming an inclusion complex with the drug amantadine (Amn) and analyzed using various scientific techniques.
  • The study found that Mag/CM-β-CD could encapsulate about 81.51% of amantadine and demonstrated a pH-sensitive drug release, with faster release at acidic conditions, following a Fickian diffusion mechanism.
  • Cytotoxicity tests showed that the Mag/CM-β-CD/Amn complex had low toxicity on HUVEC cells, indicating it could be an effective and safe option for targeted drug delivery applications.
View Article and Find Full Text PDF

This study presents the development and characterization of manganese ferrite (MnFeO)-based nanocomposites with graphite oxide (GO) and chitosan (CS) for efficient dye removal from textile wastewater and aqueous solution. Comprehensive characterization was performed using FT-IR, Raman, XRD, BET, SEM, DRS and Zeta potential techniques. XRD analysis confirmed the cubic spinel structure of MnFeO, with characteristic peaks at 2θ = 32, 35, 48, 53, 62, and 64°.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!