A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Geochemical audit of a historical tailings storage facility in Japan: Acid mine drainage formation, zinc migration and mitigation strategies. | LitMetric

AI Article Synopsis

  • Historical tailings storage facilities (TSFs) often promote acid mine drainage (AMD) and heavy metal release due to neglect and poor rehabilitation practices.
  • A study of a 40-year-old TSF in Hokkaido, Japan, revealed high levels of copper and zinc in the tailings, which easily leached into the environment due to their chemical forms.
  • A predictive model showed that AMD quality would worsen over the next 1000 years but could be improved by reducing water recharge, leading to a 24% reduction in AMD flux and lower metal release over time.

Article Abstract

Historical tailings storage facilities (TSFs) are either abandoned or sparsely rehabilitated promoting acid mine drainage (AMD) formation and heavy metal release. To sustainably manage these sites, a geochemical audit coupled with numerical simulation to predict AMD flow paths and heavy metal migration are valuable. In this study, a 40-year-old TSF in Hokkaido, Japan was investigated. Tailings in this historical TSF contain pyrite (FeS) while its copper (Cu) and zinc (Zn) contents were 1400-6440 mg/kg and 2800-22,300 mg/kg, respectively. Copper and Zn were also easily released in leaching tests because they are partitioned with the exchangeable phase (29% of Zn; 15% of Cu) and oxidizable fraction (25% of Zn; 33% of Cu). Kinetic modeling results attributed AMD formation to the interactions of pyrite and soluble phases in the tailings with oxygenated groundwater, which is supported by the sequential extraction and leaching results. Calibrations of groundwater/AMD flow and solute transport in the 2D reactive transport model were successfully done using hydraulic heads measured on-site and leaching results, respectively. The model forecasted the quality of AMD to deteriorate with time and AMD formation to continue for 1000 years. It also predicted ~24% AMD flux reduction, including lower Zn release with time when recharge reduction interventions are implemented on-site.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.129453DOI Listing

Publication Analysis

Top Keywords

amd formation
12
geochemical audit
8
historical tailings
8
tailings storage
8
acid mine
8
mine drainage
8
heavy metal
8
amd
6
audit historical
4
tailings
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!