We produced a neuroglobin variant, namely, Ngb CDless, with the excised CDloop- and D-helix, directly joining the C- and E-helices. The CDless variant retained bis-His hexacoordination, and we investigated the role of the CDloop-D-helix unit in controlling the CO binding and structural dynamics by an integrative approach based on X-ray crystallography, rapid mixing, laser flash photolysis, resonance Raman spectroscopy, and molecular dynamics simulations. Rapid mixing and laser flash photolysis showed that ligand affinity was unchanged with respect to the wild-type protein, albeit with increased on and off constants for rate-limiting heme iron hexacoordination by the distal His64. Accordingly, resonance Raman spectroscopy highlighted a more open distal pocket in the CO complex that, in agreement with MD simulations, likely involves His64 swinging inward and outward of the distal heme pocket. Ngb CDless displays a more rigid overall structure with respect to the wild type, abolishing the structural dynamics of the CDloop-D-helix hypothesized to mediate its signaling role, and it retains ligand binding control by distal His64. In conclusion, this mutant may represent a tool to investigate the involvement of CDloop-D-helix in neuroprotective signaling in a cellular or animal model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9396615 | PMC |
http://dx.doi.org/10.1021/acschembio.2c00172 | DOI Listing |
Chaos
January 2025
Physics Institute, University of São Paulo-USP, São Paulo, SP 05508-090, Brazil.
This study focuses on the analysis of a unique composition between two well-established models, known as the Logistic-Gauss map. The investigation cohesively transitions to an exploration of parameter space, essential for unraveling the complexity of dissipative mappings and understanding the intricate relationships between periodic structures and chaotic regions. By manipulating control parameters, our approach reveals intriguing patterns, with findings enriched by extreme orbits, trajectories that connect local maximum and minimum values of one-dimensional maps.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Biomedical Sciences, University of Padova, Padova, Italy.
Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Center for Advanced Materials Research, Beijing Normal University at Zhuhai, Zhuhai, 519087, China.
Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Lab. Genetics and Molecular Bases of Complex Diseases, Health Research Institute of Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain.
The underlying mechanisms explaining the differential course of SARS-CoV-2 infection and the potential clinical consequences after COVID-19 resolution have not been fully elucidated. As a dysregulated mitochondrial activity could impair the immune response, we explored long-lasting changes in mitochondrial functionality, circulating cytokine levels, and metabolomic profiles of infected individuals after symptoms resolution, to evaluate whether a complete recovery could be achieved. Results of this pilot study evidenced that different parameters of aerobic respiration in lymphocytes of individuals recuperated from a severe course lagged behind those shown upon mild COVID-19 recovery, in basal conditions and after simulated reinfection, and they also showed altered glycolytic capacity.
View Article and Find Full Text PDFJ Asian Nat Prod Res
January 2025
School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China.
Three compounds, including a novel quinolizidine alkaloid, ochrocephalamine G (), were isolated from . Structural elucidation was achieved through spectroscopic analysis and electronic circular dichroism. Biological assays showed that ochrocephalamine G (100 μM) inhibited HBsAg and HBeAg by 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!