Inactivation of Vesicular Stomatitis Virus with Light-Activated Carbon Dots and Mechanistic Implications.

ACS Appl Bio Mater

Biomanufacturing Research Institute and Technology Enterprise (BRITE) and Department of Pharmaceutical Sciences, North Carolina Central University, Durham, North Carolina 27707, United States.

Published: July 2022

The prevention of viral transmission is an important step to address the spread of viral infections. Using the enveloped vesicular stomatitis virus (VSV) as a model, this study explored the antiviral functions of the specifically designed and prepared carbon dots (CDots). The CDots were prepared using small carbon nanoparticles with surface functionalization-passivation by oligomeric polyethylenimine (PEI). The results indicated that the PEI-CDots were readily activated by visible light to effectively and efficiently inactivate VSVs under various combinations of experimental conditions (viral titer, dot concentration, and treatment time). The photodynamically induced viral structural protein degradation and genomic RNA degradation were observed, suggesting the mechanistic origins, leading to the inactivation of virus. The results suggested CDots as a class of promising broad-spectrum antiviral agents for disinfection of viruses.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.2c00153DOI Listing

Publication Analysis

Top Keywords

vesicular stomatitis
8
stomatitis virus
8
carbon dots
8
inactivation vesicular
4
virus light-activated
4
light-activated carbon
4
dots mechanistic
4
mechanistic implications
4
implications prevention
4
viral
4

Similar Publications

Developing a broad-spectrum antiviral is imperative in light of the recent emergence of recurring viral infections. The critical role of host-virus attachment and membrane fusion during enveloped virus entry is a suitable target for developing broad-spectrum antivirals. A new class of flavonoid-based fusion inhibitors are designed to alter the membrane's physical properties.

View Article and Find Full Text PDF

Oncolytic viral-based therapy and specific gene expression by promoters are modern targeted oncotherapy approaches that have gained significant attention in recent years. In this study, both strategies were combined by designing cancer-specific activation of vesicular stomatitis virus matrix expression under the survivin promoter. The matrix sequence was cloned downstream of the survivin promoter (pM).

View Article and Find Full Text PDF

Development of a latency model for HIV-1 subtype C and the impact of long terminal repeat element genetic variation on latency reversal.

J Virus Erad

December 2024

HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.

Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus.

View Article and Find Full Text PDF

SMAC-armed oncolytic virotherapy enhances the anticancer activity of PD1 blockade by modulating PANoptosis.

Biomark Res

January 2025

Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.

Background: Oncolytic viruses (OVs) are increasingly recognized as promising tools for cancer therapy, as they selectively infect and destroy tumor cells while leaving healthy cells unharmed. Despite considerable progress, the limited therapeutic efficacy of OV-based virotherapy continues to be a significant challenge in cancer treatment.

Methods: The SMAC/DIABLO gene was inserted into the genome of vesicular stomatitis virus (VSV) to generate VSV-S.

View Article and Find Full Text PDF

The Junín virus (JUNV) is one of the New World arenaviruses that cause severe hemorrhagic fever. Human transferrin receptor 1 (hTfR1) has been identified as the main receptor for JUNV for virus entry into host cells. To date, no treatment has been approved for JUNV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!