The velocity of ultrasound longitudinal waves (speed of sound) is emerging as a valuable biomarker for a wide range of diseases, including musculoskeletal disorders. Muscles are fiber-rich tissues that exhibit anisotropic behavior, meaning that velocities vary with the wave-propagation direction. Therefore, quantifying anisotropy is essential to improve velocity estimates while providing a new metric related to muscle composition and architecture. For the first time, this work presents a method to estimate speed-of-sound anisotropy in transversely isotropic tissues using pulse-echo ultrasound. We assume elliptical anisotropy and consider an experimental setup with a flat reflector parallel to the linear probe, with the muscle in between. This setup allows us to measure first-arrival reflection traveltimes using multistatic operation. Unknown muscle parameters are the orientation angle of the anisotropy symmetry axis and the velocities along and across this axis. We derive analytical expressions for the nonlinear relationship between traveltimes and anisotropy parameters, including reflector inclinations. These equations are exact for homogeneous media and are useful to estimate the effective average anisotropy in muscles. To analyze the structure of this forward problem, we formulate the inversion statistically using the Bayesian framework. We demonstrate that anisotropy parameters can be uniquely constrained by combining traveltimes from different reflector inclinations. Numerical results from wide-ranging acquisition and anisotropy properties show that uncertainties in velocity estimates are substantially lower than expected velocity differences in the muscle. Thus, our approach could provide meaningful muscle anisotropy estimates in future clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2022.3189184 | DOI Listing |
Ann Neurol
January 2025
Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Objective: The aim of this study was to explore the microstructural dynamics of the subventricular zone (SVZ) with aging and their associations with clinical disability and brain structural damage in pediatric-onset multiple sclerosis (MS) patients.
Methods: One-hundred and forty-one pediatric-onset MS patients (67 pediatric and 74 adults with pediatric-onset) and 233 healthy controls (HC) underwent neurological and 3.0 T MRI assessment.
Bioelectromagnetics
January 2025
Seibersdorf Labor GmbH, Seibersdorf, Austria.
The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.
View Article and Find Full Text PDFACS Nano
January 2025
Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Understanding energy transport in semiconductors is critical for the design of electronic and optoelectronic devices. Semiconductor material properties, such as charge carrier mobility or diffusion length, are commonly measured in bulk crystals and determined using models that describe transport behavior in homogeneous media, where structural boundary effects are minimal. However, most emerging semiconductors exhibit nano- and microscale heterogeneity.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, University of Patras, Patras 265 04, Greece.
A new [DyBiOCl(saph)] () Werner-type cluster has been prepared, which is the first Dy/Bi polynuclear compound with no metal-metal bond and one of the very few Ln-Bi (Ln = lanthanide) heterometallic complexes reported to date. The molecular compound has been deliberately transformed to its 1-D analogue [DyBiO(N)(saph)] () via the replacement of the terminal Cl ions by end-to-end bridging N groups. The overall metallic skeleton of (and ) can be described as consisting of a diamagnetic {Bi} unit with an elongated trigonal bipyramidal topology, surrounded by a magnetic {Dy} equilateral triangle, which does not contain μ-oxo/hydroxo/alkoxo groups.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
The LutR protein represses the transcription of genes encoding enzymes for the utilization of l-lactate in through binding to a specific DNA region. In this study, we employed oligonucleotide probes modified by viscosity-sensitive tetramethylated thiophene-BODIPY fluorophores to investigate the impact of selected metabolites on the LutR-DNA complex. Our goal was to identify the effector molecule whose binding alters the protein-DNA affinity, thereby enabling gene transcription.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!