A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synergistic effect of ZnO nanoparticles and hesperidin on the antibacterial properties of chitosan. | LitMetric

Synergistic effect of ZnO nanoparticles and hesperidin on the antibacterial properties of chitosan.

J Biomater Sci Polym Ed

Department of Food Processing, Bolvadin Vocational School, Afyon Kocatepe University, Afyonkarahisar, Turkey.

Published: October 2022

In this study, hesperidin (HSP) biological agent, which has strong antioxidant properties, was successfully transferred to ZnO nanoparticles, which were first synthesized by the hydrothermal method. Then, chitosan (CS)/ZnO-HSP nanocomposites were produced by adding different ratios of the ZnO-HSPs to the biodegradable CS biopolymer by hydrothermal method. The resulting materials were characterized using various biophysical strategies, including X-ray diffraction (XRD), Fourier transform infrared spectrometry, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy. The mean particle size of ZnO was estimated to be 29 nm from the XRD calculations and SEM measurements. The effect of the ZnO-HSPs on the thermal properties of pure CS was investigated by thermogravimetric analysis and differential scanning calorimetry techniques, and improvements were noted in the thermal properties of CS. While the value of CS was 81 °C, this value increased by 13-94 °C with the addition of 6 wt% by weight of the ZnO-HSP. The antibacterial effect of materials was determined by the disc diffusion method. The ZnO-HSPs added to the CS caused the nanocomposites to have a remarkable effect against and microorganisms. While the inhibition diameter of the CS against was 18.3, the same value increased to 22.3 for the composite containing 6 wt% the ZnO-HSP. The HSP increased the antioxidant capacity of both the ZnO-HSP particles and the CS/ZnO-HSP nanocomposites, reducing the toxic effects of ZnO nanoparticles. Thus, it was determined that the CS/ZnO-HSP nanocomposites did not have any cytotoxicity in healthy human cells. The fact that the produced nanocomposites exhibit antibacterial activity and do not harm human cells shows that they can be a safe product for health. From all these results, this triple hybrid system is hoped that it will be used in biomedical applications as a naturally-sourced, environmentally friendly, and cost-effective composite biomaterial by combining its antimicrobial and strong antioxidant properties.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2022.2099668DOI Listing

Publication Analysis

Top Keywords

zno nanoparticles
12
cs/zno-hsp nanocomposites
12
strong antioxidant
8
antioxidant properties
8
hydrothermal method
8
thermal properties
8
human cells
8
properties
5
nanocomposites
5
synergistic zno
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!