Low-energy (360 J) radiofrequency catheter ablation using moderate power - short duration: proof of concept based on in silico modeling.

J Interv Card Electrophysiol

Division of Cardiovascular Medicine, Harvard-Thorndike Electrophysiology Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.

Published: August 2023

Background: Pilot clinical studies suggest that very high power-very short duration (vHPvSD, 90 W/4 s, 360 J energy) is a feasible and safe technique for ablation of atrial fibrillation (AF), compared with standard applications using moderate power-moderate duration (30 W/30 s, 900 J energy). However, it is unclear whether alternate power and duration settings for the delivery of the same total energy would result in similar lesion formation. This study compares temperature dynamics and lesion size at different power-duration settings for the delivery of equivalent total energy (360 J).

Methods: An in silico model of radiofrequency (RF) ablation was created using the Arrhenius function to estimate lesion size under different power-duration settings with energy balanced at 360 J: 30 W/12 s (MPSD), 50 W/7.2 s (HPSD), and 90 W/4 s (vHPvSD). Three catheter orientations were considered: parallel, 45°, and perpendicular.

Results: In homogenous tissue, vHPvSD and HPSD produced similar size lesions independent of catheter orientation, both of which were slightly larger than MPSD (lesion size 0.1 mm deeper, ~ 0.7 mm wider, and ~ 25 mm larger volume). When considering heterogeneous tissue, these differences were smaller. Tissue reached higher absolute temperature with vHPvSD and HPSD (5-8 °C higher), which might increase risk of collateral tissue injury or steam pops.

Conclusion: Ablation for AF using MPSD or HPSD may be a feasible alternative to vHPvSD ablation given similar size lesions with similar total energy delivery (360 J). Lower absolute tissue temperature and slower heating may reduce risk of collateral tissue injury and steam pops associated with vHPvSD and longer applications using moderate power.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10840-022-01292-zDOI Listing

Publication Analysis

Top Keywords

total energy
12
lesion size
12
applications moderate
8
settings delivery
8
size power-duration
8
power-duration settings
8
vhpvsd hpsd
8
size lesions
8
risk collateral
8
collateral tissue
8

Similar Publications

Hepatic encephalopathy (HE) is a syndrome that arises from acute or chronic liver failure. This study was devised to assess the impact of a combination of boswellic acid (BA) and low doses of gamma radiation (LDR) on thioacetamide (TAA)-induced HE in an animal model. The effect of daily BA treatment (175 mg/kg body weight, for four weeks) and/or fractionated low-dose γ-radiation (LDR; 0.

View Article and Find Full Text PDF

Growth of microbes in competitive lifestyles promotes increased ARGs in soil microbiota: insights based on genetic traits.

Microbiome

January 2025

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Background: The widespread selective pressure of antibiotics in the environment has led to the propagation of antibiotic resistance genes (ARGs). However, the mechanisms by which microbes balance population growth with the enrichment of ARGs remain poorly understood. To address this, we employed microcosm cultivation at different antibiotic (i.

View Article and Find Full Text PDF

Background: Megalobrama amblycephala presents unsynchronized growth, which affects its productivity and profitability. The liver is essential for substance exchange and energy metabolism, significantly influencing the growth of fish.

Results: To investigate the differential metabolites and genes governing growth, and understand the mechanism underlying their unsynchronized growth, we conducted comprehensive transcriptomic and metabolomic analyses of liver from fast-growing (FG) and slow-growing (SG) M.

View Article and Find Full Text PDF

Nontarget Analysis and Characterization of a Group of Abundant Polyfluoroalkyl Substances─Fluorinated Benzoylurea Pesticides and Their Analogues and Transformation Products in Fish by LC-HRMS and Chemical Species-Specific Algorithms.

J Agric Food Chem

January 2025

Guangdong Key Laboratory of Environmental Resources Utilization and Protection, State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

Poly- and perfluoroalkyl substances (PFASs) are a large class of fluorinated chemicals used in various industrial and agrochemical products such as fluorinated benzoylurea (FBU) pesticides. Initiated from an incidental and preliminary finding of three high-abundance FBUs in fish, this study implemented nontarget analysis and characterization for FBUs together with their analogues and transformation products (TPs) in fish using liquid chromatography, high-resolution mass spectrometry, and chemical species-specific algorithms. A total of 23 FBU-relevant compounds were found and tentatively/accurately elucidated with structures, including 18 PFASs and 5 non-PFAS compounds, of which 4 were original FBUs, 8 were FBU analogues, and 11 were FBU-TPs.

View Article and Find Full Text PDF

Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!