In this study, novel redox-sensitive nanoparticles (NPs) were fabricated from the poly(caprolactone) conjugates with disulfide-linked poly(ethylene glycol) (DDMAT- mPEG-S-S-PCL, DPSP). The DPSP polymer was synthesized by ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. The obtaining of the DPSP polymer was confirmed by the H nuclear magnetic resonance (H NMR) and Fourier transform infrared spectroscopy (FTIR) spectra. The DPSP NPs were fabricated with the solvent-evaporation method. Docetaxel (DTX) was employed as a model drug and encapsulated into the DPSP NPs. The anti-tumor activity of the DTX-loaded DPSP NPs and free DTX against the breast cancer cells (4T1) were evaluated by MTT assay. The cargo-free DPSP NPs were in circular shapes with an average diameter of 107.8 ± 0.4 nm. These NPs displayed redox-responsive behavior in the presence of glutathione. Animal experiments indicated that the DPSP NPs showed excellent blood compatibility and good bio-security. Cell tests suggested that the DPSP NPs could be taken in by 4T1 cells, smoothly, which improved the anti-tumor activity of free DTX.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2022.2099664 | DOI Listing |
J Biomater Sci Polym Ed
December 2022
College of Pharmacy, Xinxiang Medical University, Xinxiang, P.R. China.
In this study, novel redox-sensitive nanoparticles (NPs) were fabricated from the poly(caprolactone) conjugates with disulfide-linked poly(ethylene glycol) (DDMAT- mPEG-S-S-PCL, DPSP). The DPSP polymer was synthesized by ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. The obtaining of the DPSP polymer was confirmed by the H nuclear magnetic resonance (H NMR) and Fourier transform infrared spectroscopy (FTIR) spectra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!