Volatile fatty acids (VFAs) are high-value chemicals that are increasingly demanded worldwide. Biological production via food waste (FW) dark fermentation (DF) is a promising option to achieve the sustainability and environmental benefits typical of biobased chemicals and concurrently manage large amounts of residues. DF has a great potential to play a central role in waste biorefineries due to its ability to hydrolyze and convert complex organic substrates into VFAs that can be used as building blocks for bioproducts, chemicals and fuels. Several challenges must be faced for full-scale implementation, including process optimization to achieve high and stable yields, the development of efficient techniques for selective recovery and the cost-effectiveness of the whole process. This review aims to critically discuss and statistically analyze the existing relationships between process performance and the main variables of concern. Moreover, opportunities, current challenges and perspectives of a FW-based and fermentation-centred biorefinery layout are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0734242X221103940 | DOI Listing |
Trop Anim Health Prod
January 2025
Animal Production Department, Faculty of Agriculture, Ain-Shams University, 68 Hadayek Shoubra, Cairo, 111241, Egypt.
This study was designed to evaluate the effect of substituting alfalfa hay with graded levels panicum maximum without or with graded levels of spirulina supplementation on rumen fermentation and nutrient degradability. The evaluation was achieved through an in vitro study, rumen fluid was obtained from adult sheep aged 2 years (fed clover hay), immediately after slaughter. Experimental diets were formulated as isonitrogenous and isocaloric and contained 40% forage.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Frontier Science for Advanced Environment, Graduate School of Environmental Sciences, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan. Electronic address:
This study investigated the performance and phase-specific characteristics of mesophilic co-digestion of food waste (FW) with rice straw (RS) at different RS proportions (40 %, 60 %, and 80 %), as well as mono-digestion of RS. The system achieved optimal performance at 40 % RS content, with a methane yield of 383.8 mL/g-VS and cellulose removal efficiency exceeding 75 %.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China.
Pumpkin extract has been shown to alleviate hyperglycemic symptoms by improving glucose metabolism disorders. However, the specific active components responsible for its hypoglycemic effects and the underlying molecular mechanisms remain unclear. In this study, db/db mice underwent a 4-week dietary intervention with two pumpkin flours (PF1 and PF2), total dietary fiber (TDF), soluble dietary fiber (SDF), and insoluble dietary fiber (IDF), with acarbose serving as a positive control.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Department of Endocrinology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, P. R. China.
Studies have shown that gut microbiota (GM) and its metabolites, short-chain fatty acids (SCFAs), are associated with the development of postmenopausal osteoporosis (PMO). This study explored the clinical and laboratory evidence of the relationship of GM and SCFAs to PMO and attempted to determine the potential mechanism of action. 18 patients (Collected from the First Affiliated Hospital of Guangdong Pharmaceutical University between January 2021 and August 2021) were included in this retrospective study, including 10 PMO women and 8 healthy young women as the healthy control (HC) group from Guangzhou, China.
View Article and Find Full Text PDFWater Res X
May 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!