Sandwich-Polarized Heterojunction: Efficient Charge Separation and Redox Capability Protection for Photocatalytic Overall Water Splitting.

ACS Appl Mater Interfaces

State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

Published: July 2022

Photocatalytic overall water splitting is a potential strategy to address energy crisis and environmental issues. However, it remains a great challenge to design an efficient photocatalyst, which not only possesses large spatial separation of photogenerated electrons and holes (PEH) to suppress recombination, but also can preserve the redox capability to drive the reaction. Herein, we design a new type of sandwich-polarized heterojunction by inserting a polarized semiconductor into the interlayer of the conventional photocatalyst. The inserted sublayer with out-of-plane polarization can induce a large electrostatic potential difference between the top and bottom photocatalytic sublayers. Then, the band edges of the top and bottom sublayers can be shifted to form the type II band alignment. Also, the valence band maximum and conduction band minimum will be located on different photocatalytic sublayers to facilitate the spatial separation of PEH. Simultaneously, different from the conventional type II heterojunction that reduces the redox capability, the electrostatic potential difference also acts as an auxiliary booster to offset the reduced redox potential of PEH. Taking the CN/InSe/CN heterojunction as an example, the polarized InSe effectively promotes the interface transfer of PEH in 1-5 ps and extends the lifetime of PEH to ∼186 ns, which is about six times that of bilayer CN. Simultaneously, the redox power of CN is well preserved. Our work offers a promising scheme to advance the photocatalytic overall water splitting.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c07278DOI Listing

Publication Analysis

Top Keywords

redox capability
12
photocatalytic water
12
water splitting
12
sandwich-polarized heterojunction
8
spatial separation
8
electrostatic potential
8
potential difference
8
top bottom
8
photocatalytic sublayers
8
redox
5

Similar Publications

Computational insights into the redox properties and electronic structures of [Tc=O] complexes: Implications for Tc-radiopharmaceuticals.

J Mol Graph Model

January 2025

"VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia.

Technetium-99m plays a pivotal role in nuclear medicine, offering unique IMAGING capabilities due to its favorable physical and chemical properties. This study investigates the redox behavior and electronic structures of three representative Tc(V) oxo complexes, [TcO(HMPAO)], [TcO(Bicisate)], and [TcO(DMSA)], using computational techniques. Employing relativistic density functional theory with the Zero-Order Regular Approximation (ZORA), we analyze singlet-triplet energy gaps, Gibbs free energy changes, and redox potentials in neutral and acidic environments.

View Article and Find Full Text PDF

Graphite oxidation to graphene oxide (GO) is carried out using methods developed by Brodie (GO-B) and Hummers (GO-H). However, a comparison of the antibacterial properties based on the physicochemical properties has not been performed. Therefore, this paper outlines a comparative analysis of GO-H and GO-B on antibacterial efficacy against Gram-positive and Gram-negative bacterial cultures and biofilms in an aqueous environment and discusses which of the properties of these GO nanomaterials have the most significant impact on the antibacterial activity of these materials.

View Article and Find Full Text PDF

The Redox Process in Red Blood Cells: Balancing Oxidants and Antioxidants.

Antioxidants (Basel)

December 2024

Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine.

Red blood cells (RBCs) are a vital component of the body's oxygen supply system. In addition to being pro-oxidants, they are also essential components of the body's antioxidant defense mechanism. RBCs are susceptible to both endogenous and exogenous sources of oxidants.

View Article and Find Full Text PDF

[ ZMU-T06 produces 2-substituted quinolines by oxidative dehydroaromatization].

Sheng Wu Gong Cheng Xue Bao

January 2025

Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China.

2-substituted quinolines are the building blocks for the synthesis of natural products and pharmaceuticals. In comparison with classical methods, dehydroaromatization of 2-substituted-1,2,3,4-tetrahydroquinolines has emerged in recent years as an efficient and straightforward method to synthesize quinolines due to its high atom economy and sustainability. However, existing chemical methods need transition metal catalysts and harsh reaction conditions.

View Article and Find Full Text PDF

Salvianolic acid B drives gluconeogenesis and peroxisomal redox remodeling in cardiac ischemia/reperfusion injury: A metabolism regulation by metabolite signal crosstalk.

Free Radic Biol Med

January 2025

Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China. Electronic address:

Cardiac metabolism relies on glycogen conversion by glycolysis. Glycolysis intersects fatty acid oxidation and often directs a signal crosstalk between redox metabolites. Myocardium with ischemia/reperfusion significantly diverts from normal metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!