The binary molecular complexes formed between the aromatic heterocycles furan and thiophene with formic acid were investigated using pulsed-jet Fourier transform microwave spectroscopy and quantum chemical computations. For both of the complexes, rotational spectra of the lowest energy isomer were detected and assigned. Rotational spectroscopic results and density functional theory calculations support that the preferred conformation of the furan-formic acid complex is characterized by a relatively strong O-H···O and a weak C-H···O hydrogen bonds while the O-H···π and C-H···O hydrogen bonds stabilize the thiophene-formic acid complex. Natural bond orbital analysis further proves the experimental observation, suggesting that the strength of the O-H···O(furan) interaction is about two times stronger than that of O-H···π(thiophene). The symmetry adapted perturbation theory analysis reveals that electrostatic interaction is dominant in stabilizing the two complexes and that dispersion becomes significant in the thiophene-formic acid complex compared to furan-formic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.2c03770DOI Listing

Publication Analysis

Top Keywords

furan-formic acid
12
thiophene-formic acid
12
acid complex
12
aromatic heterocycles
8
c-h···o hydrogen
8
hydrogen bonds
8
acid
7
noncovalent interactions
4
interactions aromatic
4
heterocycles carboxylic
4

Similar Publications

The binary molecular complexes formed between the aromatic heterocycles furan and thiophene with formic acid were investigated using pulsed-jet Fourier transform microwave spectroscopy and quantum chemical computations. For both of the complexes, rotational spectra of the lowest energy isomer were detected and assigned. Rotational spectroscopic results and density functional theory calculations support that the preferred conformation of the furan-formic acid complex is characterized by a relatively strong O-H···O and a weak C-H···O hydrogen bonds while the O-H···π and C-H···O hydrogen bonds stabilize the thiophene-formic acid complex.

View Article and Find Full Text PDF

The dimers formed by formic acid (FA) and furan are investigated by ab initio methods and matrix isolation spectroscopy. Nine complexes with binding energies between -3.91 and -0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!