Purpose: Conventionally fractionated radiotherapy (CRT) is widely applied for the treatment of high-risk prostate cancer. Pelvic node irradiation improves control of the disease. Although the therapeutic guidelines support the use of hypofractionated and accelerated radiotherapy (HypoAR), this is addressed to prostate and seminal vesicles. At the same time, the safety and efficacy of HypoAR for pelvic node irradiation remain obscure. Material and Methods: In a phase II study, we evaluated the feasibility of pelvic HypoAR in 22 high-risk prostate cancer patients. The RT scheme delivers 14 consecutive fractions of 3.67 Gy (total 51.38 Gy) to the prostate, 3.5 Gy (total 49 Gy) to the seminal vesicles, and 2.7 Gy (total 37.8 Gy) to the lymph nodes, using image-guided volumetric modulated arc therapy. A comparative radiobiological analysis of dose-volume histogram is performed (HypoAR vs. hypothetical equivalent CRT regimens, without and with time correction).
Results: Our clinical experience shows impressively low early and short-term late toxicities, without any grade III events, within a median follow-up of 30 months. Only one biochemical relapse was recorded 30 months after irradiation. In radiobiological analysis, considering an α/β-value of 4 Gy and a λ-value of 0.2 Gy/day for late effects, all comparisons predicted significantly lower toxicity for the HypoAR regimen (p < 0.05). For early toxicities (α/β = 10 Gy), a λ-value lower than 0.4 Gy/day favors the HypoAR regimen, which is along with the clinical results.
Conclusion: Radiobiological analysis favors HypoAR as a safe and effective regimen for high-risk prostate cancer patients, which is confirmed in the current phase II clinical study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262698 | PMC |
http://dx.doi.org/10.3857/roj.2021.01032 | DOI Listing |
Radiat Res
December 2024
Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
It is thought that cells surviving ionizing radiation exposure repair DNA double-strand breaks (DSBs) and restore their genomes. However, the recent biochemical and genetic characterization of DSB repair pathways reveals that only homologous recombination (HR) can function in an error-free manner and that the non-homologous end joining (NHEJ) pathways canonical NHEJ (c-NHEJ), alternative end joining (alt-EJ), and single-strand annealing (SSA) are error-prone, and potentially leave behind genomic scars and altered genomes. The strong cell cycle restriction of HR to S/G2 phases and the unparalleled efficiency of c-NHEJ throughout the cell cycle, raise the intriguing question as to how far a surviving cell "reaches" after repairing the genome back to its pre-irradiation state.
View Article and Find Full Text PDFClin Transl Radiat Oncol
January 2025
Antoine Lacassagne Cancer Center - University Côte d'Azur, Nice, France.
Brachytherapy (BT) plays a key role in cancer treatment by delivering a high dose to a small volume over a short time. The use of BT is currently validated in a wide range of cancers such as cervical, prostate and breast cancers while being a favourable choice for organ preservation, such as in penile or rectal cancer, or in the setting of reirradiation. Consideration of the radiobiology of BT is integral to the choices made around dose and fractionation and combination with other techniques such as external beam radiotherapy (EBRT).
View Article and Find Full Text PDFAnalyst
December 2024
Physics Department, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallès, Barcelona, Spain.
Radioresistant tumours remain complex to manage with current radiotherapy (RT) techniques. Heavy ion beams were proposed for their treatment given their advantageous radiobiological properties. However, previous studies with patients resulted in serious adverse effects in the surrounding healthy tissues.
View Article and Find Full Text PDFNeurosurgery
December 2024
Department of Neurosurgery, NYU Grossman School of Medicine, New York , New York , USA.
Background And Objectives: Vestibular schwannomas demonstrate different responses after stereotactic radiosurgery (SRS), commonly including a transient loss of internal enhancement on postcontrast T1-weighted MRI thought to be due to an early reduction in tumor vascularity. We used dynamic contrast-enhanced based golden-angle radial sparse parallel (GRASP) MRI to characterize the vascular permeability changes underlying this phenomenon, with correlations to long-term tumor regression.
Methods: Consecutive patients with vestibular schwannoma who underwent SRS between 2017 and 2019, had a transient loss of enhancement after SRS, and had long-term longitudinal GRASP studies (6, 18, and 30 months) were included in this retrospective cohort analysis (n = 19).
J Imaging
November 2024
Institute of Bioimaging and Complex Biological Systems-National Research Council (IBSBC-CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy.
Radiomics provides a structured approach to support clinical decision-making through key steps; however, users often face difficulties when switching between various software platforms to complete the workflow. To streamline this process, matRadiomics integrates the entire radiomics workflow within a single platform. This study extends matRadiomics to settings and validates it through a case study focused on malformation differentiation in a zebrafish model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!