Oral tongue squamous cell carcinoma (OTSCC) is one of the major causes of fatality in India due to very high percentage of patients with habits of smoking and chewing tobacco and associated products. Being highly heterogeneous in nature, every patient poses a different challenge clinically. To understand disease progression in an improved way, knowledge of cross‑talk between tumor stroma and the tumor cells becomes indispensable. Patient‑derived cell line models are helpful to understand the complexity of diseases. However, they have very low efficiency of establishment from the tumor samples, particularly the cancer‑associated fibroblasts (CAFs). In the present study, two novel autologous pairs were immortalized spontaneously from non‑habitual, HPV‑positive patients, who presented with OTSCC. The epithelial and fibroblast cell lines had typical polygonal and spindle‑shaped morphology, respectively. Positive staining with epithelial specific Pan‑cytokeratin (PanCK) and fibroblast specific protein (FSP‑1) further confirmed their epithelial and fibroblast origin. Unique Short Tandem Repeat (STR) profile of the cultures confirmed their novelty, while the similarity of the STR profiles between the epithelial and fibroblast cells from the same patient, confirmed their autologous nature. DNA analysis revealed aneuploidy of the established cultures. An increase in the tumorigenic potential of the established epithelial cultures upon treatment with CAF‑conditioned medium proved the 'CAF‑ness' of the established fibroblast cells. The established cultures are the first of their kind which would serve as a useful platform in understanding the tumor‑stroma cross‑talk in tongue cancer progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2022.8362 | DOI Listing |
JCI Insight
January 2025
Department of Biomedical Engineering, Oregon Health and Science University, Portland, United States of America.
Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and generate prognostic and predictive biomarkers. We analyzed single-cell, spatial data from three multiplex imaging technologies: cyclic immunofluorescence (CycIF) data we generated from 102 breast cancer patients with clinical follow-up, and publicly available imaging mass cytometry and multiplex ion-beam imaging datasets. Similar single-cell phenotyping results across imaging platforms enabled combined analysis of epithelial phenotypes to delineate prognostic subtypes among estrogen-receptor positive (ER+) patients.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
Background: Recent advances in comprehensive gene analysis revealed the heterogeneity of mouse lung fibroblasts. However, direct comparisons between these subpopulations are limited due to challenges in isolating target subpopulations without gene-specific reporter mouse lines. In addition, the properties of lung lipofibroblasts remain unclear, particularly regarding the appropriate cell surface marker and the niche capacity for alveolar epithelial cell type 2 (AT2), an alveolar tissue stem cell.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;
Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, MS, India. Electronic address:
Wounds are one of the most critical clinical issues in plastic surgery repair and restoration. Conventional wound dressing materials cannot absorb enough wound exudates and shield the site from microbial infection. Also, despite their healing prowess, bioactive molecules from medicinal plants are less bioavailable at the wound sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!