In this paper, an autonomous brain tumor segmentation and detection model is developed utilizing a convolutional neural network technique that included a local binary pattern and a multilayered support vector machine. The detection and classification of brain tumors are a key feature in order to aid physicians; an intelligent system must be designed with less manual work and more automated operations in mind. The collected images are then processed using image filtering techniques, followed by image intensity normalization, before proceeding to the patch extraction stage, which results in patch extracted images. During feature extraction, the RGB image is converted to a binary image by grayscale conversion via the colormap process, and this process is then completed by the local binary pattern (LBP). To extract feature information, a convolutional network can be utilized, while to detect objects, a multilayered support vector machine (ML-SVM) can be employed. CNN is a popular deep learning algorithm that is utilized in a wide variety of engineering applications. Finally, the classification approach used in this work aids in determining the presence or absence of a brain tumor. To conduct the comparison, the entire work is tested against existing procedures and the proposed approach using critical metrics such as dice similarity coefficient (DSC), Jaccard similarity index (JSI), sensitivity (SE), accuracy (ACC), specificity (SP), and precision (PR).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252655PMC
http://dx.doi.org/10.1155/2022/9015778DOI Listing

Publication Analysis

Top Keywords

brain tumor
12
local binary
12
binary pattern
12
detection model
8
pattern multilayered
8
multilayered support
8
support vector
8
vector machine
8
cnn-based brain
4
tumor detection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!