CPDR: An R Package of Recommending Personalized Drugs for Cancer Patients by Reversing the Individual's Disease-Related Signature.

Front Pharmacol

State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.

Published: June 2022

Due to cancer heterogeneity, only some patients can benefit from drug therapy. The personalized drug usage is important for improving the treatment response rate of cancer patients. The value of the transcriptome of patients has been recently demonstrated in guiding personalized drug use, and the Connectivity Map (CMAP) is a reliable computational approach for drug recommendation. However, there is still no personalized drug recommendation tool based on transcriptomic profiles of patients and CMAP. To fill this gap, here, we proposed such a feasible workflow and a user-friendly R package-Cancer-Personalized Drug Recommendation (CPDR). CPDR has three features. 1) It identifies the individual disease signature by using the patient subgroup with transcriptomic profiles similar to those of the input patient. 2) Transcriptomic profile purification is supported for the subgroup with high infiltration of non-cancerous cells. 3) It supports drug efficacy assessment using drug sensitivity data on cancer cell lines. We demonstrated the workflow of CPDR with the aid of a colorectal cancer dataset from GEO and performed the validation of drug efficacy. We further assessed the performance of CPDR by a pancreatic cancer dataset with clinical response to gemcitabine. The results showed that CPDR can recommend promising therapeutic agents for the individual patient. The CPDR R package is available at https://github.com/AllenSpike/CPDR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252520PMC
http://dx.doi.org/10.3389/fphar.2022.904909DOI Listing

Publication Analysis

Top Keywords

personalized drug
12
drug recommendation
12
drug
9
cpdr package
8
cancer patients
8
transcriptomic profiles
8
drug efficacy
8
cancer dataset
8
cpdr
7
cancer
6

Similar Publications

Background: HIV remains a major challenge in KwaZulu-Natal, South Africa, particularly for young women who face disproportionate risks and barriers to prevention and treatment. Most HIV cure trials, however, occur in high-income countries.

Objective: To examine the perspectives of young women diagnosed with acute HIV in a longitudinal study, focusing on their perceptions on ATI-inclusive HIV cure trials and the barriers and facilitators to participation.

View Article and Find Full Text PDF

The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining.

View Article and Find Full Text PDF

The Acinetobacter baumannii is a member of the "ESKAPE" bacteria responsible for many serious multidrug-resistant (MDR) illnesses. This bacteria swiftly adapts to environmental cues leading to the emergence of multidrug-resistant variants, particularly in hospital/medical settings. In this work, we have demonstrated the outer membrane protein 33-36 (Omp33-36) porin as a potential therapeutic target in A.

View Article and Find Full Text PDF

Fluctuations in circulating cell-free mitochondrial and nuclear DNA copy numbers in blood plasma after anti-tuberculosis drug intake in patients with drug-susceptible tuberculosis.

Tuberculosis (Edinb)

January 2025

Latvian Biomedical Research and Study Centre, Ratsupites street 1, k-1, Riga, LV-1067, Latvia; Riga Stradiņš University, Pharmacogenetic and Precision Medicine Laboratory, Konsula street 21, Riga, LV-1007, Latvia. Electronic address:

Biomarker research characterising the effect of anti-tuberculosis (TB) chemotherapy on systemic body response is still limited. In this study, we aimed to investigate fluctuations in circulating cell-free mitochondrial DNA (ccf-mtDNA) and circulating cell-free nuclear DNA (ccf-nDNA) copy number (CN) in blood plasma of patients with drug-susceptible TB (DS-TB) and to decipher factors related to these fluctuations. The results showed considerable changes in ccf-mtDNA CN in plasma samples before drug intake and 2 and 6 h afterwards, with high inter patient variability at each time point.

View Article and Find Full Text PDF

Background: Neonatal sepsis (NNS) is a known cause of morbidity and mortality especially in developing countries. The global resistance scourge may worsen the management outcomes of NNS. This study aims to determine the current profile of bacteriological agents of NNS, their resistance status and associated mortality in our setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!