The Gamma-ray Module, GMOD, is a miniaturised novel gamma-ray detector which will be the primary scientific payload on the Educational Irish Research Satellite (EIRSAT-1) 2U CubeSat mission. GMOD comprises a compact (25 mm 25 mm 40 mm) cerium bromide scintillator coupled to a tiled array of 4 4 silicon photomultipliers, with front-end readout provided by the IDE3380 SIPHRA. This paper presents the detailed GMOD design and the accommodation of the instrument within the restrictive CubeSat form factor. The electronic and mechanical interfaces are compatible with many off-the-shelf CubeSat systems and structures. The energy response of the GMOD engineering qualification model has been determined using radioactive sources, and an energy resolution of 5.4% at 662 keV has been measured. EIRSAT-1 will perform on-board processing of GMOD data. Trigger results, including light-curves and spectra, will be incorporated into the spacecraft beacon and transmitted continuously. Inexpensive hardware can be used to decode the beacon signal, making the data accessible to a wide community. GMOD will have scientific capability for the detection of gamma-ray bursts, in addition to the educational and technology demonstration goals of the EIRSAT-1 mission. The detailed design and measurements to date demonstrate the capability of GMOD in low Earth orbit, the scalability of the design for larger CubeSats and as an element of future large gamma-ray missions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250491 | PMC |
http://dx.doi.org/10.1007/s10686-022-09842-z | DOI Listing |
J Am Chem Soc
January 2025
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
CuO octahedra usually show elongated distortion, leading to active orbitals and planar exchange interactions, while compressed CuO octahedra with active orbitals and unidirectional exchange interactions are exceptionally rare. Here, we design and synthesize a new frustrated antiferromagnet CaCuFeO through a high-pressure and high-temperature approach, in which robust compressed CuO octahedra are realized, separating the FeO sheets that comprise zigzag spin ladders. Magnetic susceptibility and specific heat measurements exhibit a long-range antiferromagnetic order below the Néel temperature of 165 K, which is further confirmed by neutron diffraction.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
The "similarity of dissimilarities" is an emerging paradigm in biomedical science with significant implications for protein function prediction, machine learning (ML), and personalized medicine. In protein function prediction, recognizing dissimilarities alongside similarities provides a more detailed understanding of evolutionary processes, allowing for a deeper exploration of regions that influence biological functionality. For ML models, incorporating dissimilarity measures helps avoid misleading results caused by highly correlated or similar data, addressing confounding issues like the Doppelgänger Effect.
View Article and Find Full Text PDFPLoS One
January 2025
Virology Group, Vice-chancellor of Research, Universidad El Bosque, Bogotá, Colombia.
Extracellular vesicles (EVs) are membrane-bound structures produced and released into the extracellular space by all types of cells. Due to their characteristics, EVs play crucial roles in cellular communication and signaling, holding an immense potential as biomarkers and molecular transporters. Various methods have been developed to label and characterize EVs, however, visualizing EVs remains a process that requires highly specialized and expensive equipment, which is not always available in all the laboratories.
View Article and Find Full Text PDFJ Integr Complement Med
January 2025
Research Consultant to Subtle Energy Funders Collective, Warwick, New York, USA.
Biofield Therapies, with a historical lineage spanning millennia and continuing relevance in contemporary practices, have been used to address various health conditions and promote wellbeing. The scientific study and adoption of these therapies have been hindered by cultural challenges and institutional barriers. In addition, the current research landscape for Biofield Therapies is insufficiently documented.
View Article and Find Full Text PDFSmall
January 2025
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
Single-atom catalysts (SACs) with unique geometric and electronic configurations have triggered great interest in many important reactions. However, controllably modulating the electronic structure of metal centers to enhance catalytic performance remains a challenge. Here, the electronic structure of Ni centers over Ni-NC SACs by introducing electron-rich phosphorus or electron-deficient boron for electrochemical CO reduction (CORR) is systematically tailored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!