Covering the Combinatorial Design Space of Multiplex CRISPR/Cas Experiments in Plants.

Front Plant Sci

Knowledge-based Systems (KERMIT), Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.

Published: June 2022

Over the past years, CRISPR/Cas-mediated genome editing has revolutionized plant genetic studies and crop breeding. Specifically, due to its ability to simultaneously target multiple genes, the multiplex CRISPR/Cas system has emerged as a powerful technology for functional analysis of genetic pathways. As such, it holds great potential for application in plant systems to discover genetic interactions and to improve polygenic agronomic traits in crop breeding. However, optimal experimental design regarding of the in multiplex CRISPR/Cas screens remains largely unexplored. To contribute to well-informed experimental design of such screens in plants, we first establish a representation of the design space at different stages of a multiplex CRISPR/Cas experiment. We provide two independent computational approaches yielding insights into the guaranteeing full coverage of all relevant multiplex combinations of gene knockouts in a specific multiplex CRISPR/Cas screen. These frameworks take into account several design parameters (e.g., the number of target genes, the number of gRNAs designed per gene, and the number of elements in the combinatorial array) and efficiencies at subsequent stages of a multiplex CRISPR/Cas experiment (e.g., the distribution of gRNA/Cas delivery, gRNA-specific mutation efficiency, and knockout efficiency). With this work, we intend to raise awareness about the limitations regarding the number of target genes and order of genetic interaction that can be realistically analyzed in multiplex CRISPR/Cas experiments with a given number of plants. Finally, we establish guidelines for designing multiplex CRISPR/Cas experiments with an optimal coverage of the combinatorial design space at minimal plant library size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251496PMC
http://dx.doi.org/10.3389/fpls.2022.907095DOI Listing

Publication Analysis

Top Keywords

multiplex crispr/cas
32
design space
12
crispr/cas experiments
12
multiplex
9
combinatorial design
8
crispr/cas
8
crop breeding
8
experimental design
8
stages multiplex
8
crispr/cas experiment
8

Similar Publications

KOnezumi-AID: Automation Software for Efficient Multiplex Gene Knockout Using Target-AID.

Int J Mol Sci

December 2024

Laboratory Animal Resource Center, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.

With the groundbreaking advancements in genome editing technologies, particularly CRISPR-Cas9, creating knockout mutants has become highly efficient. However, the CRISPR-Cas9 system introduces DNA double-strand breaks, increasing the risk of chromosomal rearrangements and posing a major obstacle to simultaneous multiple gene knockout. Base-editing systems, such as Target-AID, are safe alternatives for precise base modifications without requiring DNA double-strand breaks, serving as promising solutions for existing challenges.

View Article and Find Full Text PDF

Delivery of Prime editing in human stem cells using pseudoviral NanoScribes particles.

Nat Commun

January 2025

CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.

Prime Editing can rewrite genes in living cells by allowing point mutations, deletions, or insertion of small DNA sequences with high precision. However, its safe and efficient delivery into human stem cells remains a technical challenge. In this report, we engineer Nanoscribes, virus-like particles that encapsidate ribonucleoprotein complexes of the Prime Editing system and allow their delivery into recipient cells.

View Article and Find Full Text PDF
Article Synopsis
  • Rice is a vital global staple, feeding over half the population but facing threats from climate change, pests, and diseases that compromise its sustainability.
  • CRISPR-Cas9 technology offers a promising solution for improving rice yield and resilience by allowing precise gene editing without introducing foreign DNA.
  • This study outlines various CRISPR-based techniques to enhance rice's ability to withstand environmental stressors, emphasizing the importance of integrating genetic improvements with established farming practices to ensure food security.
View Article and Find Full Text PDF

DNA Tetrahedron-enhanced single-particle counting integrated with cascaded CRISPR Program for ultrasensitive dual RNAs logic sensing.

J Colloid Interface Sci

December 2024

National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, People's Republic of China.

CRISPR-Cas-based technology, emerging as a leading platform for molecular assays, has been extensively researched and applied in bioanalysis. However, achieving simultaneous and highly sensitive detection of multiple nucleic acid targets remains a significant challenge for most current CRISPR-Cas systems. Herein, a CRISPR Cas12a based calibratable single particle counting-mediated biosensor was constructed for dual RNAs logic and ultra-sensitive detection in one tube based on DNA Tetrahedron (DTN)-interface supported fluorescent particle probes coupled with a novel synergistic cascaded strategy between CRISPR Cas13a system and strand displacement amplification (SDA).

View Article and Find Full Text PDF

Programmable and modular systems capable of orthogonal genomic and transcriptomic perturbations are crucial for biological research and treating human genetic diseases. Here, we present the minimal versatile genetic perturbation technology (mvGPT), a flexible toolkit designed for simultaneous and orthogonal gene editing, activation, and repression in human cells. The mvGPT combines an engineered compact prime editor (PE), a fusion activator MS2-p65-HSF1 (MPH), and a drive-and-process multiplex array that produces RNAs tailored to different types of genetic perturbation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!