Introduction: In spinal surgery, precise instrumentation is essential. This study aims to evaluate the accuracy of navigated, O-arm-controlled screw positioning in thoracic and lumbar spine instabilities.

Materials And Methods: Posterior instrumentation procedures between 2010 and 2015 were retrospectively analyzed. Pedicle screws were placed using 3D rotational fluoroscopy and neuronavigation. Accuracy of screw placement was assessed using a 6-grade scoring system. In addition, screw length was analyzed in relation to the vertebral body diameter. Intra- and postoperative revision rates were recorded.

Results: Thoracic and lumbar spine surgery was performed in 285 patients. Of 1704 pedicle screws, 1621 (95.1%) showed excellent positioning in 3D rotational fluoroscopy imaging. The lateral rim of either pedicle or vertebral body was protruded in 25 (1.5%) and 28 screws (1.6%), while the midline of the vertebral body was crossed in 8 screws (0.5%). Furthermore, 11 screws each (0.6%) fulfilled the criteria of full lateral and medial displacement. The median relative screw length was 92.6%. Intraoperative revision resulted in excellent positioning in 58 of 71 screws. Follow-up surgery due to missed primary malposition had to be performed for two screws in the same patient. Postsurgical symptom relief was reported in 82.1% of patients, whereas neurological deterioration occurred in 8.9% of cases with neurological follow-up.

Conclusions: Combination of neuronavigation and 3D rotational fluoroscopy control ensures excellent accuracy in pedicle screw positioning. As misplaced screws can be detected reliably and revised intraoperatively, repeated surgery for screw malposition is rarely required.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10191982PMC
http://dx.doi.org/10.1007/s00402-022-04514-1DOI Listing

Publication Analysis

Top Keywords

rotational fluoroscopy
16
thoracic lumbar
12
lumbar spine
12
vertebral body
12
accuracy pedicle
8
pedicle screw
8
screw placement
8
screw positioning
8
screws
8
pedicle screws
8

Similar Publications

The shoulder joint complex is prone to musculoskeletal issues, such as rotator cuff-related pain, which affect two-thirds of adults and often result in suboptimal treatment outcomes. Current musculoskeletal models used to understand shoulder biomechanics are limited by challenges in personalization, inaccuracies in predicting joint and muscle loads, and an inability to simulate anatomically accurate motions. To address these deficiencies, we developed a novel, personalized modeling framework capable of calibrating subject-specific joint centers and functional axes for the shoulder complex.

View Article and Find Full Text PDF

Elbow rotation affects the accuracy of rotational formulas: validation of a modified method.

BMC Musculoskelet Disord

January 2025

Pediatric Orthopedic Hospital, Honghui Hospital, Xi'an Jiao tong University, Xi'an, 710000, China.

Background: Supracondylar humerus fractures (SCHFs) are the most common elbow fractures in children and are typically treated with closed reduction and Kirschner pin fixation. However, varying degrees of residual rotational displacement may remain after closed reduction. Several methods exist to assess rotational displacement, but none account for the effect of elbow rotation on the results.

View Article and Find Full Text PDF

Background: Nonanatomical anterior cruciate ligament (ACL) reconstruction occasionally induces ACL failure without an evident injury episode, necessitating revision surgery. Although the in vivo kinematics of ACL deficiency before primary ACL reconstruction are well documented, the kinematics of ACL failure after nonanatomical reconstruction remain unexplored. The aim of this study is to investigate ACL failure kinematics following nonanatomical reconstruction.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined cochlear implant array malpositioning, particularly focusing on a specific issue called tip fold-over, which can impair speech perception and cause other complications.
  • Researchers conducted experiments using cadaveric human heads to measure intracochlear pressure and observe the mechanics of tip fold-over events during the insertion of electrodes.
  • Three distinct types of tip fold-overs were identified, with significant pressure changes linked to electrode twisting; this recognition could improve surgical techniques and monitoring during cochlear implant procedures.
View Article and Find Full Text PDF

Comparison of software-assisted and freehand methods of rotational assessment for diaphyseal femur fractures.

Eur J Orthop Surg Traumatol

December 2024

Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, 444 S. San Vincente Blvd, Suite 603, Los Angeles, CA, 90048, USA.

Objective: Accurate rotational reduction following femoral shaft fracture fixation is absent in up to 28% of cases yet is critical for lower extremity biomechanics. The objective of this cadaveric study was to compare the results of freehand methods of rotational reduction with software-assisted rotational reduction.

Methods: Four fellowship-trained orthopedic trauma surgeons attempted rotational correction in a cadaveric model with fluoroscopic assistance using (1) their method of choice (MoC) and (2) software assistance (SA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!