Objective: To comprehensively characterize the utilization of alginate hydrogels as an alternative treatment modality for spinal cord injury (SCI).

Methods: An extensive review of the published literature on studies using alginate hydrogels to treat SCI was performed. The review of the literature was performed using electronic databases such as PubMed, EMBASE, and OVID MEDLINE electronic databases. The keywords used were "alginate," "spinal cord injury," "biomaterial," and "hydrogel."

Results: In the literature, we identified a total of 555 rat models that were treated with alginate scaffolds for regenerative biomarkers. Alginate hydrogels were found to be efficient and promising substrates for tissue engineering, drug delivery, neural regeneration, and cellbased therapies for SCI repair. With its ability to act as a pro-regenerative and antidegenerative agent, the alginate hydrogel has the potential to improve clinical outcomes.

Conclusion: The emerging developments of alginate hydrogels as treatment modalities may support current and future tissue regenerative strategies for SCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260541PMC
http://dx.doi.org/10.14245/ns.2244186.093DOI Listing

Publication Analysis

Top Keywords

alginate hydrogels
20
treatment modality
8
modality spinal
8
spinal cord
8
cord injury
8
review literature
8
electronic databases
8
alginate
6
hydrogels
5
role alginate
4

Similar Publications

Purpose: The objective was to use cyclic tensile loading to compare the gap formation at suture site of three different suture materials to repair bovine radial meniscal tears: (1) polyglactin sutures, (2) tough adhesive puncture sealing (TAPS) sutures and (3) ultra-high molecular weight polyethylene (UHMWPE) sutures.

Methods: Twelve ex vivo bovine knees were dissected to retrieve the menisci. Complete radial tears were performed on 24 menisci, which were then separated into three groups and repaired using either pristine 2-0 polyglactin sutures, TAPS sutures (2-0 polyglactin sutures coated with adhesive chitosan/alginate hydrogels) or 2-0 UHMWPE sutures with a single stitch.

View Article and Find Full Text PDF

pH-sensitive chitosan/sodium alginate/calcium chloride hydrogel beads for potential oral delivery of rice bran bioactive peptides.

Food Chem

December 2024

Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China. Electronic address:

Although rice bran active peptide (RBAP) has potent antioxidant properties, its practical applications have been limited by its low bioavailability. In this study, we hypothesized that pH-responsive hydrogels prepared from the ionic gelation between chitosan and alginate could be a promising delivery system of short-chain peptides, like RBAP, for protecting them from chemical degradation during digestion and improving their functionality. The hydrogel beads retained RBAP in the gastric environment due to strong interactions between two biopolymers and RBAP, followed by a sustained release of more than 70 % peptide in the intestinal condition, thus improving its gastrointestinal stability.

View Article and Find Full Text PDF

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

In this study, a novel adsorbent called Ca@SP was developed by immobilizing microalgae protein (Spirulina platensis, SP) in an alginate matrix for enhanced Pb²⁺ removal from aqueous solutions. Synthesized via in situ crosslinking, Ca@SP leverages the synergistic effects of alginate's gel-forming ability and SP's N-rich biomass. Characterization of Ca@SP revealed a green spherical hydrogel with a BET specific surface area of 159.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!