A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-Assembled Biohybrid: A Living Material To Bridge the Functions between Electronics and Multilevel Biological Modules/Systems. | LitMetric

Self-Assembled Biohybrid: A Living Material To Bridge the Functions between Electronics and Multilevel Biological Modules/Systems.

ACS Appl Mater Interfaces

Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States.

Published: July 2022

Exoelectrogens are known to be specialized in reducing various extracellular electron acceptors to form conductive nanomaterials that are integrated with their cell bodies both structurally and functionally. Utilizing this unique capacity, we created a strategy toward the design and fabrication of a biohybrid electronic material by exploiting bioreduced graphene oxide (B-rGO) as the structural and functional linker to facilitate the interaction between the exoelectrogen community and external electronics. The metabolic functions of exoelectrogens encoded in this living hybrid can therefore be effectively translated toward corresponding microbial fuel cell applications. Furthermore, this material can serve as a fundamental building block to be integrated with other microorganisms for constructing various electronic components. Toward a broad impact of this biohybridization strategy, photosynthetic organelles and cells were explored to replace exoelectrogens as the active bioreducing components and as formed materials exhibited 4- and 8-fold improvements in photocurrent intensities as compared with native bioelectrode interfaces. Overall, a biologically driven strategy for the fabrication and assembly of electronic materials is demonstrated, which provides a unique opportunity to precisely probe and modulate desired biofunctions through deterministic electronic inputs/outputs and revolutionize the design and manufacturing of next-generation (bio)electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c05639DOI Listing

Publication Analysis

Top Keywords

self-assembled biohybrid
4
biohybrid living
4
living material
4
material bridge
4
bridge functions
4
functions electronics
4
electronics multilevel
4
multilevel biological
4
biological modules/systems
4
modules/systems exoelectrogens
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!