Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Exoelectrogens are known to be specialized in reducing various extracellular electron acceptors to form conductive nanomaterials that are integrated with their cell bodies both structurally and functionally. Utilizing this unique capacity, we created a strategy toward the design and fabrication of a biohybrid electronic material by exploiting bioreduced graphene oxide (B-rGO) as the structural and functional linker to facilitate the interaction between the exoelectrogen community and external electronics. The metabolic functions of exoelectrogens encoded in this living hybrid can therefore be effectively translated toward corresponding microbial fuel cell applications. Furthermore, this material can serve as a fundamental building block to be integrated with other microorganisms for constructing various electronic components. Toward a broad impact of this biohybridization strategy, photosynthetic organelles and cells were explored to replace exoelectrogens as the active bioreducing components and as formed materials exhibited 4- and 8-fold improvements in photocurrent intensities as compared with native bioelectrode interfaces. Overall, a biologically driven strategy for the fabrication and assembly of electronic materials is demonstrated, which provides a unique opportunity to precisely probe and modulate desired biofunctions through deterministic electronic inputs/outputs and revolutionize the design and manufacturing of next-generation (bio)electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c05639 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!