The growth performance, immunological status, and intestinal microbiology of white shrimp, Litopenaeus vannamei, were evaluated after dietary administration of the commercial probiotic SYNSEA. Shrimp were fed a control diet (without probiotic supplement) and two levels of SYNSEA probiotic, a low concentration of SYNSEA (LSL) containing 10 CFU (g diet)Bacillus subtilis and 10 CFU (g diet) lactic acid bacteria (LAB), and a high concentration of SYNSEA (LSH) containing 10 CFU (g diet)B. subtilis and 10 CFU (g diet) LAB, for 12 weeks. Shrimp fed with the LSL diet significantly increased growth performance as well as final weight and feed efficiency compared to the control, but not the LSH diet. After being orally challenged with Vibrio parahaemolyticus, shrimp fed with LSL diet prior to the challenge or fed with LSL and pathogen simultaneously showed significantly lower mortality compared to the control. SYNSEA probiotic significantly improved shrimp immune response, including lysozyme activity in LSL and LSH groups, and phagocytic activity in the LSL group in comparison to the control. In addition, the gene expressions of anti-lipopolysaccharide factor 2 in LSL and LSH groups, and penaeidin 4 in LSL were also up-regulated. Although there was no significant difference among groups for hepatopancreas and intestinal morphology, the muscular layer thickness and villi height were slightly improved in the intestines of shrimp fed SYNSEA. The 16S rDNA gene amplicon sequence analysis using next-generation sequencing revealed a significant decrease in α-diversity (Margalef's species richness) after oral administration of SYNSEA due to an increase in the relative abundance of beneficial bacteria in the gut flora of shrimp, such as Lactobacillus, Shewanella, and Bradymonadales and a decrease in harmful bacteria, such as Vibrio, Candidatus_Berkiella, and Acinetobacter baumannii. Together the data suggest that the provision of SYNSEA probiotic at 10 CFU (g diet)B. subtilis and 10 CFU (g diet) LAB can improve shrimp growth, enhance immunity, and disease resistance status of the host. In addition, these findings conclude that SYNSEA probiotic has great preventive and therapeutic potential for Vibrio infection in shrimp aquaculture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2022.06.071 | DOI Listing |
Fish Shellfish Immunol
August 2022
Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan; Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, 912, Taiwan. Electronic address:
The growth performance, immunological status, and intestinal microbiology of white shrimp, Litopenaeus vannamei, were evaluated after dietary administration of the commercial probiotic SYNSEA. Shrimp were fed a control diet (without probiotic supplement) and two levels of SYNSEA probiotic, a low concentration of SYNSEA (LSL) containing 10 CFU (g diet)Bacillus subtilis and 10 CFU (g diet) lactic acid bacteria (LAB), and a high concentration of SYNSEA (LSH) containing 10 CFU (g diet)B. subtilis and 10 CFU (g diet) LAB, for 12 weeks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!