CrXTe(X = Si, Ge) monolayers: a new type of two-dimensional high-Ising ferromagnetic semiconductors with a large magnetic anisotropy.

J Phys Condens Matter

College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China.

Published: July 2022

Two-dimensional (2D) ferromagnetic semiconductor (FMS) provides the ideal platform for the development of quantum information technology in nanoscale devices. However, most of them suffer from low Curie temperature and small magnetic anisotropic energy (MAE), severely limiting their practical application. In this work, by using first-principles calculations, we predicted two stable 2D materials, namely, CrSiTeand CrGeTemonolayers. Interestingly, both of them are intrinsic direct band gap FMSs (∼1 eV) with a large magnetization (8f.u.) and sizable MAE (∼500V Cr). Monte Carlo simulations based on Heisenberg model suggest markedly high Curie temperatures of these monolayers (∼200 K). Besides, their high mechanical, dynamical, and thermal stabilities are further verified by elastic constants, phonon dispersion calculations, andmolecular dynamics simulations. The outstanding attributes render CrXTe(X = Si, Ge) monolayers broadening the candidates of 2D FMS for a wide range of applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac7f16DOI Listing

Publication Analysis

Top Keywords

crxtex monolayers
8
monolayers type
4
type two-dimensional
4
two-dimensional high-ising
4
high-ising ferromagnetic
4
ferromagnetic semiconductors
4
semiconductors large
4
large magnetic
4
magnetic anisotropy
4
anisotropy two-dimensional
4

Similar Publications

Human organotypic colon in vitro microtissue: unveiling a new window into colonic drug disposition.

Eur J Pharm Sci

January 2025

Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium. Electronic address:

The purpose of this study was to evaluate EpiColon, a novel human organotypic 3D colon microtissue prototype, developed to assess colonic drug disposition, with a particular focus on permeability ranking, and compare its performance to Caco-2 monolayers. EpiColon was characterized for barrier function using transepithelial electrical resistance (TEER), morphology via histology and immunohistochemistry, and functionality through drug transport studies measuring apparent permeability (P). Cutoff thresholds for the permeability of FITC-dextran 4 kDa (FD4), FITC-dextran 10 kDa (FD10S), and [C]mannitol were established to monitor microtissue integrity.

View Article and Find Full Text PDF

Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity.

View Article and Find Full Text PDF

Selective activity of Tabebuia avellanedae against Giardia duodenalis infecting organoid-derived human gastrointestinal epithelia.

Int J Parasitol Drugs Drug Resist

January 2025

Department of Infectious Diseases, Unit of Foodborne and Neglected Parasitic Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy. Electronic address:

Giardia duodenalis is a widespread intestinal protozoan that affects mammals, including humans. Symptoms can range from being subclinical to causing severe abdominal pain and diarrhoea. Giardiasis often requires repeated treatment with synthetic drugs like metronidazole.

View Article and Find Full Text PDF

A novel biochar material with magnetic modification by MnFeO and surficial hydroxyl grafting (h-MFO-BC) was synthesized for capturing HMs (Cd, Pb and Cu) and their competition in composite systems was investigated. The modification of hydroxyl considerably improved the adsorption capacity of HMs. Chemisorption and monolayer and homogeneous reaction dominated adsorption processes.

View Article and Find Full Text PDF

Protocol for the generation of HLF+ HOXA+ human hematopoietic progenitor cells from pluripotent stem cells.

STAR Protoc

January 2025

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:

Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!