Lysosomal membrane permeabilization (LMP) is an underlying feature of diverse conditions including neurodegeneration. Cells respond by extensive ubiquitylation of membrane-associated proteins for clearance of the organelle through lysophagy that is facilitated by the ubiquitin-directed AAA-ATPase VCP/p97. Here, we assessed the ubiquitylated proteome upon acute LMP and uncovered a large diversity of targets and lysophagy regulators. They include calponin-2 (CNN2) that, along with the Arp2/3 complex, translocates to damaged lysosomes and regulates actin filaments to drive phagophore formation. Importantly, CNN2 needs to be ubiquitylated during the process and removed by VCP/p97 for efficient lysophagy. Moreover, we identified the small heat shock protein HSPB1 that assists VCP/p97 in the extraction of CNN2 and show that other membrane regulators including SNAREs, PICALM, AGFG1, and ARL8B are ubiquitylated during lysophagy. Our data reveal a framework of how ubiquitylation and two effectors, VCP/p97 and HSPB1, cooperate to protect cells from the deleterious effects of LMP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2022.06.012DOI Listing

Publication Analysis

Top Keywords

lysophagy
5
vcp/p97
5
ubiquitin profiling
4
profiling lysophagy
4
lysophagy identifies
4
identifies actin
4
actin stabilizer
4
cnn2
4
stabilizer cnn2
4
cnn2 target
4

Similar Publications

Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.

View Article and Find Full Text PDF

Bulk macroautophagy/autophagy, typically induced by starvation, is generally thought to non-selectively isolate cytosolic components for degradation. However, a detailed analysis of bulk autophagy cargo has not been conducted. We recently employed mass spectrometry to analyze the contents of isolated autophagic bodies.

View Article and Find Full Text PDF

Autophagy-dependent survival relies on a crucial oscillatory response during cellular stress. Although oscillatory behaviour is typically associated with processes like the cell cycle or circadian rhythm, emerging experimental and theoretical evidence suggests that such periodic dynamics may explain conflicting experimental results in autophagy research. In this study, we demonstrate that oscillatory behaviour in the regulation of the non-selective, stress-induced macroautophagy arises from a series of interlinked negative and positive feedback loops within the mTORC1-AMPK-ULK1 regulatory triangle.

View Article and Find Full Text PDF

The role of macroautophagy in substance use disorders.

Ann N Y Acad Sci

December 2024

Department of Medicine, School of Basic Medicine, Ningbo University, Ningbo, China.

Macroautophagy, a universal cellular process, sends cellular material to lysosomes for breakdown and is often activated by stressors like hypoxia or drug exposure. It is vital for protein balance, neurotransmitter release, synaptic function, and neuron survival. The role of macroautophagy in substance use disorders is dual.

View Article and Find Full Text PDF

A unique inflammaging profile generated by T cells from people with obesity is metformin resistant.

Geroscience

December 2024

Department of Pharmacology & Nutritional Sciences, Diabetes and Obesity Research Priority Area, University of Kentucky, Lexington, KY, USA.

Article Synopsis
  • Obesity in older adults is prevalent and contributes to chronic inflammation, affecting the health of older populations.
  • Research suggests that obesity alters the immune response, particularly influencing T-cell function and the effectiveness of anti-inflammatory drugs like metformin.
  • Data reveal that metformin does not improve immune cell function in obese older adults as it does in lean individuals, indicating that obesity complicates the body's inflammatory response and must be considered in clinical studies of geroprotective treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!