Immunoglobulin A (IgA) nephropathy is the most common primary glomerulonephritis worldwide, with no disease-specific treatment and up to 40% of patients progressing to kidney failure. IgA nephropathy (IgAN), characterized by IgA1-containing immunodeposits in the glomeruli, is considered to be an autoimmune disease in which the kidneys are injured as innocent bystanders. Glomerular immunodeposits are thought to originate from the circulating immune complexes that contain aberrantly -glycosylated IgA1, the main autoantigen in IgAN, bound by IgG autoantibodies. A common clinical manifestation associated with IgAN includes synpharyngitic hematuria at disease onset or during disease activity. This observation suggests a connection of disease pathogenesis with an activated mucosal immune system of the upper-respiratory and/or gastrointestinal tract and IgA1 glycosylation. In fact, some cytokines can enhance production of aberrantly -glycosylated IgA1. This process involves abnormal cytokine signaling in IgA1-producing cells from patients with IgAN. In this article, we present our view of pathogenesis of IgAN and review how some cytokines can contribute to the disease process by enhancing production of aberrantly glycosylated IgA1. We also review current clinical trials of IgAN based on cytokine-targeting therapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536348 | PMC |
http://dx.doi.org/10.1089/jir.2022.0039 | DOI Listing |
Am J Chin Med
January 2025
Basic Medical School, Gansu University of Chinese Medicine, Lanzhou 730000, P. R. China.
Oxidative stress represents a pivotal mechanism in the pathogenesis of numerous chronic diseases. The Kelch-like ECH-associated protein 1-transcription factor NF-E2 p45-related factor 2 (KEAP1-NRF2) pathway plays a crucial role in maintaining redox homeostasis and regulating a multitude of biological processes such as inflammation, protein homeostasis, and metabolic homeostasis. In this paper, we present the findings of recent studies on the KEAP1-NRF2 pathway, which have revealed that it is aberrantly regulated and induces oxidative stress injury in a variety of diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, respiratory diseases, digestive diseases, and cancer.
View Article and Find Full Text PDFMol Genet Genomic Med
February 2025
Department of Chemistry and Molecular Biology, Gothenburg University, Gothenburg, Sweden.
Background: SYNGAP1 encodes a Ras/Rap GTPase-activating protein that is predominantly expressed in the brain with the functional roles in regulating synaptic plasticity, spine morphogenesis, and cognition function. Pathogenic variants in SYNGAP1 have been associated with a spectrum of neurodevelopmental disorders characterized by developmental delays, intellectual disabilities, epilepsy, hypotonia, and the features of autism spectrum disorder. The aim of this study was to identify a novel SYNGAP1 gene variant linked to neurodevelopmental disorders and to evaluate the pathogenicity of the detected variant.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).
View Article and Find Full Text PDFBrain Res
February 2025
Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China. Electronic address:
Artemisinin (ART), a natural product isolated from the traditional Chinese plant Artemisia annua L., has shown neuroprotective properties in addition to its well-established antimalarial activities. This study investigates the therapeutic effect of ART in ischemic stroke (IS) and delves into its functional mechanism.
View Article and Find Full Text PDFAm J Nephrol
December 2024
Division of Renal Diseases and Hypertension, George Washington University, Washington, DC, USA.
Introduction: Understanding the molecular signals associated with the progression of kidney disease is vital for risk stratification and targeted treatment. Recent advances in RNA-sequencing technique have enabled us to characterize extracellular transcriptome profiles for precision diagnostics.
Method: We evaluated the plasma mRNA profile of participants exhibiting slow (n = 119) and fast (n = 119) decline in estimated glomerular filtration rate (eGFR) among the Chronic Renal Insufficiency Cohort (CRIC) in a nested case control study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!