Polyphenol-Enriched Extract of Lacquer Sap Used as a Dentine Primer with Benefits of Improving Collagen Cross-Linking and Antibacterial Functions.

ACS Biomater Sci Eng

State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130021, P. R. China.

Published: September 2022

Commercial dentin adhesive systems are applied to restorations due to their resistant bonding properties, but they suffer from the lack of bioactivity and are prone to hydrolysis. Therefore, to overcome these limitations, an eco-friendly natural monomer, urushiol, was adopted to be a primer in dentin bonding due to its interaction with collagen and antibacterial activity, preventing further hydrolysis development. First, urushiol was determined to be capable of improving the biological stability of dentin collagen through cross-linking. Using high-fidelity analytical chemistry techniques, such as Fourier transform infrared spectroscopy, we quantified the effects of urushiol on collagen molecules. It could also effectively decrease weight loss after collagenase ingestion by improving the stability of dentin. Moreover, urushiol inhibited growth as well as its biofilm formation. Finally, we demonstrated that the urushiol primer could improve the bonding strength, particularly after aging. The cross-linking and antibacterial functions of urushiol have provided promising developmental prospects for biomaterials in dentin adhesion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9472228PMC
http://dx.doi.org/10.1021/acsbiomaterials.1c01287DOI Listing

Publication Analysis

Top Keywords

collagen cross-linking
8
cross-linking antibacterial
8
antibacterial functions
8
stability dentin
8
urushiol
6
dentin
5
polyphenol-enriched extract
4
extract lacquer
4
lacquer sap
4
sap dentine
4

Similar Publications

Anchoring of Probiotic-Membrane Vesicles in Hydrogels Facilitates Wound Vascularization.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.

Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.

View Article and Find Full Text PDF

Rapid Preparation of Collagen/Red Blood Cell Membrane Tubes for Stenosis-Free Vascular Regeneration.

ACS Nano

January 2025

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.

Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.

View Article and Find Full Text PDF

Miniaturized Liver Disease Mimics to Gain Insights into MMP Expression during Disease Progression.

ACS Biomater Sci Eng

January 2025

Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.

Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver conditions, ranging from hepatic steatosis to steatohepatitis, fibrosis, and severe outcomes such as cirrhosis or cancer. The progression from hepatic steatosis to fibrosis involves significant extracellular matrix (ECM) remodeling, characterized by increased collagen deposition and cross-linking of ECM proteins, causing increased tissue stiffness and altered MMP expression patterns. Dysregulated MMP expression and extracellular acidosis are key contributors to NAFLD progression.

View Article and Find Full Text PDF

Multiscale Mechanical Study of Proanthocyanidins for Recovering Residual Stress in Decellularized Blood Vessels.

Adv Healthc Mater

January 2025

Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400044, P. R. China.

Decellularized artificial blood vessels prepared using physical and chemical methods often exhibit limitations, including poor mechanical performance, susceptibility to inflammation and calcification, and reduced patency. Cross-linking techniques can enhance the stiffness, as well as anti-inflammatory and anti-calcification properties of decellularized vessels. However, conventional cross-linking methods fail to effectively alleviate residual stress post-decellularization, which significantly impacts the patency and vascular remodeling following the implantation of artificial vessels.

View Article and Find Full Text PDF

Corneal first aid lens: Collagen-based hydrogels loading aFGF as contact lens for treating corneal injuries.

J Control Release

January 2025

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China. Electronic address:

Severe corneal injuries can cause visual impairment even blindness. Surgically stitching or implanting biomaterials have been developed, but their implementation requires professional surgeons, failing to address the immediate need of medical treatment. The pressing challenge lies in developing multifunctional biomaterials that enable self-management of corneal injuries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!