Biofunctionalization of silk biomaterial surfaces with extracellular matrix (ECM) molecules, cell binding peptides, or growth factors is important in a range of applications, including tissue engineering and development of implantable medical devices. Passive adsorption is the most common way to immobilize molecules of interest on preformed silk biomaterials but can lead to random molecular orientations and displacement from the surface, limiting their applications. Herein, we developed techniques for covalent immobilization of biomolecules using enzyme- or photoinitiated formation of dityrosine bonds between the molecule of interest and silk. Using recombinantly expressed domain V of the human basement membrane proteoglycan perlecan (rDV) as a model molecule, we demonstrated that rDV can be covalently immobilized via dityrosine cross-linking without the need to modify rDV or silk biomaterials. Dityrosine-based immobilization resulted in a different molecular orientation to passively absorbed rDV with less C- and N-terminal region exposure on the surface. Dityrosine-based immobilization supported functional rDV immobilization where immobilized rDV supported endothelial cell adhesion, spreading, migration, and proliferation. These results demonstrate the utility of dityrosine-based cross-linking in covalent immobilization of tyrosine-containing molecules on silk biomaterials in the absence of chemical modification, adding a simple and accessible technique to the silk biofunctionalization toolbox.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c03345 | DOI Listing |
Plant J
January 2025
Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
Spider silk, especially dragline silk from golden silk spiders (Trichonephila clavipes), is an excellent natural material with remarkable mechanical properties. Many studies have focused on the use of plants as biofactories for the production of recombinant spider silk. However, the effects of this material on the mechanical properties or physiology of transgenic plants remain poorly understood.
View Article and Find Full Text PDFPharmaceutics
January 2025
School of Medicine and Population Health, The University of Sheffield, Barber House, Sheffield S10 2HQ, UK.
: In the quest for sustainable and biocompatible materials, silk fibroin (SF), derived from natural silk, has emerged as a promising candidate for nanoparticle production. This study aimed to fabricate silk fibroin particles (SFPs) using a novel swirl mixer previously presented by our group, evaluating their characteristics and suitability for drug delivery applications, including magnetic nanoparticles and dual-drug encapsulation with curcumin (CUR) and 5-fluorouracil (5-FU). : SFPs were fabricated via microfluidics-assisted desolvation using a swirl mixer, ensuring precise mixing kinetics.
View Article and Find Full Text PDFMolecules
January 2025
Laboratório de Bioengenharia, Universidade Federal de Itajubá, Itabira 35903-087, Minas Gerais, Brazil.
Fibroin, a protein extracted from silk, offers advantageous properties such as non-immunogenicity, biocompatibility, and ease of surface modification, which have been widely utilized for a variety of biomedical applications. However, in vivo studies have revealed critical challenges, including rapid enzymatic degradation and limited stability. To widen the scope of this natural biomacromolecule, the grafting of polymers onto the protein surface has been advanced as a platform to enhance protein stability and develop smart conjugates.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China. Electronic address:
Orb-weaver spiders utilize morphologically differentiated abdominal glands to produce up to seven types of silks throughout their life cycles. Tubuliform silk is unique as it serves to protect developing embryos and hatchlings. However, our current understanding of the relationship between structure and function of tubuliform silk protein remains limited.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia.
Fibrous by-products, including defective or double cocoons, are obtained during silk processing. These cocoons primarily contain fibroin and sericin (SS) proteins along with minor amounts of wax and mineral salts. In conventional textile processes, SS is removed in the production of smooth, lustrous silk threads, and is typically discarded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!