AI Article Synopsis

  • * Researchers used methods like membrane filtration and mass spectrometry to isolate and identify a peptide sequence (KLENCNYAVELGK) that exhibited strong antibacterial activity.
  • * The findings suggest that this algal-derived peptide could be a promising candidate for developing new antimicrobial drugs to combat resistant bacteria such as E. coli and Staphylococcus aureus.

Article Abstract

The antimicrobial peptides derived from microalgae have attracted a huge attention due to the insufficient availability of effective drugs from the natural resources. In this study, the enzymatic hydrolysate of protein derived from Limnospira maxima was prepared using pepsin under optimized conditions. The peptides with range of 10 kDa were isolated and purified using the Ultra membrane filtration, SDS-PAGE, and TLC. Furthermore, the peptide sequence was identified and characterized by MALDI-TOF mass spectrometry in which an algal peptide, KLENCNYAVELGK showed a strong signal at 466.68 m/z among seven peptides derived from the pepsin hydrolysate. The FT-IR spectroscopic study confirmed the presence of a characteristic functional group of amino acids in the sequence. The algal derived peptide showed antibacterial properties against Escherichia coli (27 ± 0.5 mm) and Staphylococcus aureus (14 mm ± 0.5). This study paves a way to explore the antibacterial peptide from a novel species, L. maxima (MZ26519) evident to utilize for the novel drug to overcome the conventional approach.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-022-04023-2DOI Listing

Publication Analysis

Top Keywords

peptides derived
12
pepsin hydrolysate
8
derived limnospira
8
derived
5
investigation pepsin
4
hydrolysate short
4
short antibacterial
4
peptides
4
antibacterial peptides
4
limnospira antimicrobial
4

Similar Publications

Objective: To test whether messenger RNA (mRNA) splicing is altered in neutrophils from patients with systemic lupus erythematosus (SLE) and can produce neoantigens.

Methods: RNA sequencing of neutrophils from patients with SLE (n = 15) and healthy donors (n = 12) were analyzed for mRNA splicing using the RiboSplitter pipeline, an event-focused tool based on SplAdder with subsequent translation and protein domain annotation. RNA sequencing from SARS-CoV2-infected individuals was used as an additional comparator.

View Article and Find Full Text PDF

The ability of immune cells to expand numerically after infusion distinguishes adoptive immunotherapies from traditional drugs, providing unique therapeutic advantages as well as the potential for unmanageable toxicities. Here, we describe a case of lethal hyperleukocytosis in a patient with neuroblastoma treated on phase 1 clinical trial (NCT03294954) with autologous natural killer T cells (NKTs) expressing a GD2-specific chimeric antigen receptor and cytokine interleukin 15 (GD2-CAR.15).

View Article and Find Full Text PDF

Background: SL-172154 is a hexameric fusion protein adjoining the extracellular domain of SIRPα to the extracellular domain of CD40L via an inert IgG-derived Fc domain. In preclinical studies, a murine equivalent SIRPα-Fc-CD40L fusion protein provided superior antitumor immunity in comparison to CD47- and CD40-targeted antibodies. A first-in-human phase I trial of SL-172154 was conducted in patients with platinum-resistant ovarian cancer.

View Article and Find Full Text PDF

Hybrid lipid nanoparticles with tumor antigen-primed dendritic cell membranes for post-surgical tumor immunotherapy.

J Control Release

January 2025

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Post-surgical tumor recurrence poses a major challenge in cancer treatment due to residual tumor cells and surgery-induced immunosuppression. Here, we developed hybrid nanoparticles, termed T-DCNPs, designed to promote antigen-specific activation of cytotoxic CD8+ T cells while concurrently inhibiting immunosuppressive pathways within the tumor microenvironment. T-DCNPs were formulated by co-extruding lipid nanoparticles containing a transforming growth factor β inhibitor with dendritic cells that were pre-treated with autologous neoantigens derived from surgically excised tumors.

View Article and Find Full Text PDF

A lipidated peptide derived from the C-terminal tail of the vasopressin 2 receptor shows promise as a new β-arrestin inhibitor.

Pharmacol Res

January 2025

Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; RECITAL International Partnership Lab, Université de Caen-Normandie, Caen, France & Université de Sherbrooke, Sherbrooke, QC, Canada. Electronic address:

β-arrestins play pivotal roles in seven transmembrane receptor (7TMR) signalling and trafficking. To study their functional role in regulating specific receptor systems, current research relies mainly on genetic tools, as few pharmacological options are available. To address this issue, we designed and synthesised a novel lipidated phosphomimetic peptide inhibitor targeting β-arrestins, called ARIP, which was developed based on the C-terminal tail (A343-S371) of the vasopressin V2 receptor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!