Ex-Vivo and In-Vivo Expansion of Spermatogonial Stem Cells Using Cell-Seeded Microfluidic Testis Scaffolds and Animal Model.

Cell Tissue Bank

Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran.

Published: March 2023

Aims: This study was designed to provide both ex-vivo and in-vivo methods for the extraction and expansion of spermatogonial stem cells (SSCs).

Methods: For in-vivo experiments, azoospermic mouse model was performed with Busulfan. Isolation, culture, and characterization of neonate mouse SSC were also achieved. We performed an in-vivo injection of labeled SSCs to the testes with azoospermia. In ex-vivo experiments, extracted SSCs were seeded on the fabricated scaffold consisting of hyaluronic acid (HA) and decellularized testis tissues (DTT). Immunofluorescence staining with PLZF, TP1, and Tekt 1 was performed for SSCs differentiation and proliferation.

Results: Several studies demonstrated efficient spermatogenic arrest in seminiferous tubules and proved the absence of spermatogenesis. Transplanted SSCs moved and settled in the basement covering the seminiferous tubules. Most of the cells were positive for Dil, after 4 weeks. An epithelium containing spermatogonia-like cells with Sertoli-like, and Leydig cells were evident in the seminiferous tubules of biopsies, and the IHC staining was significantly positive, 4 weeks after injection of SSCs. The results of the ex-vivo experiments showed positive staining for all markers, which was significantly enhanced in scaffolds of ex-vivo experiments compared with in-vitro seeded scaffolds.

Conclusion: Ex-vivo SSC differentiation and proliferation using cell-seeded microfluidic testis scaffolds maybe effective for treatment of the azoospermia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10561-022-10024-6DOI Listing

Publication Analysis

Top Keywords

ex-vivo experiments
12
seminiferous tubules
12
ex-vivo in-vivo
8
stem cells
8
cell-seeded microfluidic
8
microfluidic testis
8
testis scaffolds
8
ex-vivo
6
cells
5
sscs
5

Similar Publications

: Following tooth extraction, resveratrol (RSV) can support healing by reducing inflammation and microbial risks, though its poor solubility limits its effectiveness. This study aims to develop a solid nanocomposite by embedding RSV in lipid nanoparticles (mLNP) within a hydrophilic matrix, to the scope of improving local delivery and enhancing healing. Hydroxyapatite (HXA), often used as a bone substitute, was added to prevent post-extraction alveolus volume reduction.

View Article and Find Full Text PDF

Pinctada birnavirus (PiBV) is the causative agent of summer atrophy in pearl oyster ( (Gould)). The disease, which induces mass mortality in juveniles less than 1 year old and abnormalities in adults, was first reported in Japan in 2019. Research on the disease has been hindered by the lack of cell lines capable of propagating PiBV.

View Article and Find Full Text PDF

Background: Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that utilize the ubiquitin-proteasome system to selectively degrade target proteins. This innovative technology has shown remarkable efficacy and specificity in degrading oncogenic proteins and has progressed through various stages of preclinical and clinical development for hematologic malignancies, including adult acute myeloid leukemia (AML). However, the application of PROTACs in pediatric AML remains largely unexplored.

View Article and Find Full Text PDF

Grana Padano (GP) is an Italian hard cooked cheese characterized by a long ripening process and high protein and Ca contents. After in vitro static simulated gastrointestinal digestion, GP digest contained caseinophosphopeptides that were 6 to 24 amino acids in length, including tri-phosphorylated species incorporating the pSer-pSer-pSer-Glu-Glu cluster. Using rat ileum tissue, the digest was used to assess Ca absorption ex vivo, which showed significantly better results for the GP digest in comparison to the CaCO aqueous solution.

View Article and Find Full Text PDF

Diet-derived urolithin A is produced by a dehydroxylase encoded by human gut Enterocloster species.

Nat Commun

January 2025

Department of Pharmacology & Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada.

Urolithin A (uroA) is a polyphenol derived from the multi-step metabolism of dietary ellagitannins by the human gut microbiota. Once absorbed, uroA can trigger mitophagy and aryl hydrocarbon receptor signaling pathways, altering host immune function, mitochondrial health, and intestinal barrier integrity. Most individuals harbor a microbiota capable of uroA production; however, the mechanisms underlying the dehydroxylation of its catechol-containing precursor (uroC) are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!