Large-scale screening of 848 culturable soil and endophytic filamentous fungi and yeasts for the ability to mobilize inorganic and organic P compounds was performed. Five strains of filamentous fungi having the highest level of phosphate-mobilizing ability were selected: Penicillium bilaiae Pb14, P. bilaiae C11, P. rubens EF5, Talaromyces pinophilus T14, and Aspergillus sp. D1. These strains in vitro actively solubilized Ca, Al, and Fe phosphates and Ca phytate. The amount of mobilized P negatively correlated with pH of the medium and positively correlated with fungal biomass. The proposed mechanisms for P mobilization were acidification of the medium, organic acid release, and phosphatase activity. The fungi decreased pH of the medium from 7.0 to 2.3-5.0. Ten different organic acids were produced by fungi with pyruvic acid being a major component. Acid phosphatase activity varied from 0.12 EU to 0.84 EU, and alkaline phosphatase activity varied from 0.08 EU to 0.61 EU depending on the strain. Available P concentration in soil was increased by 13-28% after introduction of the fungi. The fungi also produced phytohormones auxins, salicylic acid, and abscisic acid. All the strains, except Aspergillus sp. D1, promoted elongation and increased biomass of barley seedlings grown in soil. Shoot P concentration increased by 17-26% after inoculation with P. bilaiae Pb14, T. pinophilus T14, and Aspergillus sp. D1. It was concluded that the selected fungal strains promoted plant growth due to P mobilization and phytohormone production.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-022-02926-1DOI Listing

Publication Analysis

Top Keywords

phosphatase activity
12
filamentous fungi
8
bilaiae pb14
8
pinophilus t14
8
t14 aspergillus
8
activity varied
8
fungi
7
acid
5
phosphate mobilization
4
mobilization culturable
4

Similar Publications

Vacuole fusion is driven by SNARE proteins that require activation-or priming-by the AAA+ protein Sec18 (NSF) before they can bring membranes together and trigger the merger of two bilayers into a continuous membrane. Sec18 resides on vacuoles prior to engaging inactive cis-SNARE complexes through its interaction with the regulatory lipid phosphatidic acid (PA). Binding PA causes Sec18 to undergo large conformational changes that keeps it bound to the membrane, thus precluding its interactions with SNAREs.

View Article and Find Full Text PDF

Polyglucosans are glycogen molecules with overlong chains, which are hyperphosphorylated in the neurodegenerative Lafora disease (LD). Brain polyglucosan bodies (PBs) cause fatal neurodegenerative diseases including Lafora disease and adult polyglucosan body disease (ABPD), for which treatments, biomarkers, and good understanding of their pathogenesis are currently missing. Mutations in the genes for the phosphatase laforin or the E3 ubiquitin ligase malin can cause LD.

View Article and Find Full Text PDF

Maejo 341 Sweet potato (MSP) is a new purple sweet potato variety cultivated in Northern Thailand, but its health benefits are unknown. This study aimed to investigate its antioxidant, anti-inflammatory, and anti-osteoporotic activities, as well as its anthocyanin content. The peel and flesh of MSP were extracted with ethanol and water.

View Article and Find Full Text PDF

Although the toxic effect of Sedentary behavior (SED) on bone health has been demonstrated in the previous study, the underlying mechanisms of SED, or break SED to bone health remain unclear. In this study, we aim to investigate the effects of sedentary behavior (SED) on bone health, as well as the potential favor effects of moderate to vigorous physical activity (MVPA) and periodic interruptions of SED. To simulate SED, we used small Plexiglas cages (20.

View Article and Find Full Text PDF

This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!