Leigh syndrome (LS) is a rare, inherited neurometabolic disorder that presents with bilateral brain lesions caused by defects in the mitochondrial respiratory chain and associated nuclear-encoded proteins. We generated human induced pluripotent stem cells (iPSCs) from three LS patient-derived fibroblast lines. Using whole-exome and mitochondrial sequencing, we identified unreported mutations in pyruvate dehydrogenase (GM0372, PDH; GM13411, MT-ATP6/PDH) and dihydrolipoyl dehydrogenase (GM01503, DLD). These LS patient-derived iPSC lines were viable and capable of differentiating into progenitor populations, but we identified several abnormalities in three-dimensional differentiation models of brain development. LS patient-derived cerebral organoids showed defects in neural epithelial bud generation, size and cortical architecture at 100 days. The double mutant MT-ATP6/PDH line produced organoid neural precursor cells with abnormal mitochondrial morphology, characterized by fragmentation and disorganization, and showed an increased generation of astrocytes. These studies aim to provide a comprehensive phenotypic characterization of available patient-derived cell lines that can be used to study Leigh syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357378PMC
http://dx.doi.org/10.1242/dev.199914DOI Listing

Publication Analysis

Top Keywords

leigh syndrome
12
cerebral organoids
8
human ipsc-derived
4
ipsc-derived cerebral
4
organoids model
4
model features
4
features leigh
4
syndrome reveal
4
reveal abnormal
4
abnormal corticogenesis
4

Similar Publications

Mitochondrial disorder diagnosis and management- what the pediatric neurologist wants to know.

Eur J Paediatr Neurol

December 2024

University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Amalia Children's Hospital, Department of Paediatrics, Radboudumc, Nijmegen, the Netherlands. Electronic address:

Childhood-onset mitochondrial disorders are rare genetic diseases that often manifest with neurological impairment due to altered mitochondrial structure or function. To date, pathogenic variants in 373 genes across the nuclear and mitochondrial genomes have been linked to mitochondrial disease, but the ensuing genetic and clinical complexity of these disorders poses considerable challenges to their diagnosis and management. Nevertheless, despite the current lack of curative treatment, recent advances in next generation sequencing and -omics technologies have laid the foundation for precision mitochondrial medicine through enhanced diagnostic accuracy and greater insight into pathomechanisms.

View Article and Find Full Text PDF

Unidirectional and bidirectional causation between smoking and blood DNA methylation: evidence from twin-based Mendelian randomisation.

Eur J Epidemiol

January 2025

Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Suite 100, Richmond, VA, 23298, USA.

Cigarette smoking is associated with numerous differentially-methylated genomic loci in multiple human tissues. These associations are often assumed to reflect the causal effects of smoking on DNA methylation (DNAm), which may underpin some of the adverse health sequelae of smoking. However, prior causal analyses with Mendelian Randomisation (MR) have found limited support for such effects.

View Article and Find Full Text PDF

Objective: To assess the feasibility of first polar body transfer (PB1T) combined with preimplantation mitochondrial genetic testing for blocking the transmission of a pathogenic mitochondrial DNA 8993T>G mutation.

Methods: A Chinese family affected with Leigh syndrome which had attended the Reproductive Medicine Centre of the First Affiliated Hospital of Anhui Medical University in September 2021 was selected as the study subject. Controlled ovarian hyperstimulation was carried out for the proband after completing the detection of the mitochondrial DNA 8993T>G mutation load among the pedigree members.

View Article and Find Full Text PDF

E4F1 coordinates pyruvate metabolism and the activity of the elongator complex to ensure translation fidelity during brain development.

Nat Commun

January 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France.

Pyruvate metabolism defects lead to severe neuropathies such as the Leigh syndrome (LS) but the molecular mechanisms underlying neuronal cell death remain poorly understood. Here, we unravel a connection between pyruvate metabolism and the regulation of the epitranscriptome that plays an essential role during brain development. Using genetically engineered mouse model and primary neuronal cells, we identify the transcription factor E4F1 as a key coordinator of AcetylCoenzyme A (AcCoA) production by the pyruvate dehydrogenase complex (PDC) and its utilization as an essential co-factor by the Elongator complex to acetylate tRNAs at the wobble position uridine 34 (U).

View Article and Find Full Text PDF

Kikuchi-Fujimoto disease (KFD) is a rare, self-limiting, and ultimately benign condition characterised by localised lymphadenopathy. The association of KFD with aseptic meningitis is even more uncommon. We report a case of KFD accompanied by aseptic meningitis in a 31-year-old male who initially presented with lethargy, night sweats, axillary lymphadenopathy, and oral ulcers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!