The acquisition of monodisperse metal nanoparticles covered by conductive metal-organic frameworks (cMOFs) is an archetype of an electron-unobstructed core-shell composite, valued for its potential electrocatalytic ability and selectivity enhancement. In this work, Pt@cMOF composites with direct interfaces showed better performance in the oxygen reduction reaction than composites with indirect interfaces or with lower electroconductivity shells. This composite was proved to exhibit the ability to expedite electron transfer with different thicknesses of electrode materials. The detailed mechanism was studied by exploring the conductivity of shell materials, interfaces between cores and shells, and the surface electronic structure of the nanoparticles. We also report reaction selectivity from the inherent porous shells in the selective reduction of cinnamyl alcohol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr02681c | DOI Listing |
Nanoscale
July 2022
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
The acquisition of monodisperse metal nanoparticles covered by conductive metal-organic frameworks (cMOFs) is an archetype of an electron-unobstructed core-shell composite, valued for its potential electrocatalytic ability and selectivity enhancement. In this work, Pt@cMOF composites with direct interfaces showed better performance in the oxygen reduction reaction than composites with indirect interfaces or with lower electroconductivity shells. This composite was proved to exhibit the ability to expedite electron transfer with different thicknesses of electrode materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!