The poor adhesion performance of typical gels still remains a challenge to find a simple method to achieve strong and reversible adhesion with the existence of water. Here, a poly(acryloyloxyethyl trimethyl ammonium chloride-co-2-vinyl-4-6-diamino-1,3,5-triazine) (P(DAC-co-VDT)) gel with high and adjustable interfacial adhesion is fabricated by combining cation-triazine π interaction and multiple hydrogen bonding and through a one-pot route. Characterization of the gels reveals that the two types of interactions are introduced into the gel network and that the gel-gel and gel-glass interfacial adhesion can be readily adjusted in a wide range from 15.98 to 123.60 kPa. This approach enables the creation of high-strength composites using P(DAC-co-VDT) gel as matrix, anionic monomer sodium p-styrene sulfonate as ion concentration adjustor, and discrete quartz sands as filler with easy and repeated moldability and self-healing capability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202200464 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!