Butter-Derived Ruminant Trans Fatty Acids Do Not Alleviate Atherosclerotic Lesions in High-Fat Diet-Fed ApoE Mice.

J Agric Food Chem

State Key Lab of Food Science and Technology, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330047, China.

Published: July 2022

Atherosclerosis (AS) is the most common cardiovascular disease (CVD). Currently, it is widely believed that R-TFA and I-TFA may cause different biological effects. In the present study, we aim to elucidate the effect of mixed R-TFA derived from butter on the development of AS in high-fat diet-fed ApoE mice and find the possible mechanism. It was shown that butter-derived R-TFA promoted dyslipidemia, reduced thoracic and abdominal aorta diameters, and induced aortic lipid deposition and atherosclerotic lesions in high-fat diet-fed ApoE mice. Meanwhile, butter-derived R-TFA affected the serum lipid profile of high-fat diet-fed ApoE mice and the lipid metabolism of human umbilical vein endothelial cells (HUVECs). Through lipidomic techniques, we found that butter-derived R-TFA had a significant effect on the glycerophospholipid metabolic pathway. In conclusion, our results demonstrated that butter-derived R-TFA does not alleviate but promotes atherosclerotic lesions in high-fat diet-fed ApoE mice and that the glycerophospholipid metabolic pathway plays a major role in this pro-atherosclerotic effect.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.2c02225DOI Listing

Publication Analysis

Top Keywords

high-fat diet-fed
20
diet-fed apoe
20
apoe mice
20
butter-derived r-tfa
16
atherosclerotic lesions
12
lesions high-fat
12
glycerophospholipid metabolic
8
metabolic pathway
8
r-tfa
6
butter-derived
5

Similar Publications

Brd4 modulates metabolic endotoxemia-induced inflammation by regulating colonic macrophage infiltration in high-fat diet-fed mice.

Commun Biol

December 2024

Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.

High-fat diet (HFD) induces low-grade chronic inflammation, contributing to obesity and insulin resistance. However, the precise mechanisms triggering obesity-associated metabolic inflammation remain elusive. In this study, we identified epigenetic factor Brd4 as a key player in this process by regulating the expression of Ccr2/Ccr5 in colonic macrophage.

View Article and Find Full Text PDF

Semaglutide alleviates the pancreatic β cell function via the METTL14 signaling and modulating gut microbiota in type 2 diabetes mellitus mice.

Life Sci

December 2024

Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang City, Jiangxi Province, China; Branch of National Clinical Research Center for Metabolic Diseases, Nanchang City, Jiangxi Province, China. Electronic address:

Aims: Semaglutide, a novel long-acting GLP-1RA, stimulates insulin and suppresses islet-secreted glucagon to reduce glucose levels. It has been unveiled that m6A mRNA modification plays a pivotal role in regulating β cell function. However, it remains unclear whether semaglutide can elicit protective effects through manipulating m6A modification and the underlying mechanism.

View Article and Find Full Text PDF

NORAD exacerbates metabolic dysfunction-associated steatotic liver disease development via the miR-511-3p/Rock2 axis and inhibits ubiquitin-mediated degradation of ROCK2.

Metabolism

December 2024

Department of Pathology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, China; Postdoctoral Research Station of Clinical Medicine, Jinan University, Guangzhou, China. Electronic address:

Background & Aims: Abnormal expression of long noncoding RNAs is strongly linked to metabolic dysfunction-associated steatotic liver disease (MASLD). However, the precise molecular mechanisms remain unclear. This study explores the roles of noncoding RNA activated by DNA damage (NORAD)/miR-511-3p/Rho-associated protein kinase 2 (Rock2) axis and the NORAD/ROCK2 interaction in the development of MASLD.

View Article and Find Full Text PDF

A comprehensive atlas of multi-tissue metabolome and microbiome shifts: Exploring obesity and insulin resistance induced by perinatal bisphenol S exposure in high-fat diet-fed offspring.

J Hazard Mater

December 2024

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China. Electronic address:

Bisphenol S (BPS) is widely used as a substitute for Bisphenol A (BPA). While perinatal BPS exposure is suspected to increase susceptibility to high-caloric diet-induced adipogenesis, how BPS affects offspring remains largely unknown. This study explored effects of prenatal BPS exposure on adiposity and insulin resistance in high-fat diet (HFD)-fed C57BL/6 offspring, revealing significant changes in body weight, glucose tolerance, insulin sensitivity, and histopathology.

View Article and Find Full Text PDF

Near-infrared fluorescence imaging tool with large Stokes shift for sensitively detecting carboxylesterase 2 and monitoring its expression in non-alcoholic fatty liver disease.

Talanta

December 2024

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China. Electronic address:

Non-alcoholic fatty liver disease (NAFLD) now affects more than one quarter of the global population and becomes a heavy public health burden. However, the underlying mechanism for the pathogenesis of NAFLD is still not clear. Carboxylesterase 2 (CES2), highly abundant in the liver and intestine, plays an important role in endogenous lipid metabolism and lipolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!