HIV nucleoside reverse transcriptase inhibitors.

Eur J Med Chem

Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA. Electronic address:

Published: October 2022

More than 40 years into the pandemic, HIV remains a global burden and as of now, there is no cure in sight. Fortunately, highly active antiretroviral therapy (HAART) has been developed to manage and suppress HIV infection. Combinations of two to three drugs targeting key viral proteins, including compounds inhibiting HIV reverse transcriptase (RT), have become the cornerstone of HIV treatment. This review discusses nucleoside reverse transcriptase inhibitors (NRTIs), including chain terminators, delayed chain terminators, nucleoside reverse transcriptase translocation inhibitors (NRTTIs), and nucleotide competing RT inhibitors (NcRTIs); focusing on their history, mechanism of action, resistance, and current clinical application, including long-acting regimens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114554DOI Listing

Publication Analysis

Top Keywords

reverse transcriptase
16
nucleoside reverse
12
transcriptase inhibitors
8
chain terminators
8
hiv
5
hiv nucleoside
4
reverse
4
transcriptase
4
inhibitors
4
inhibitors years
4

Similar Publications

Background: The global pandemic caused by SARS-CoV-2 has resulted in millions of people experiencing long COVID condition, a range of persistent symptoms following the acute phase, with an estimated prevalence of 27%-64%.

Materials And Methods: To understand its pathophysiology, we conducted a longitudinal study on viral load and cytokine dynamics in individuals with confirmed SARS-CoV-2 infection. We used reverse transcriptase droplet digital PCR to quantify viral RNA from nasopharyngeal swabs and employed multiplex technology to measure plasma cytokine levels in a cohort of people with SARS-CoV-2 infection.

View Article and Find Full Text PDF

Background: Streptomyces roseochromogenes NRRL 3504 produces clorobiocin, an aminocoumarin antibiotic that inhibits DNA replication. No other natural products have been isolated from this bacterium so far, despite the presence of a rich repertoire of specialized metabolite biosynthesis gene clusters (smBGCs) within its genome. Heterologous expression of smBGCs in suitable chassis speeds up the discovery of the natural products hidden behind these sets of genes.

View Article and Find Full Text PDF

Background: In recent years, the life expectancy of HIV patients has increased due to the introduction and development of antiretroviral therapies. However, although it has become a chronic pathology, the patients present a higher metabolic, hepatic, and renal risk and a greater aging than the general population.

Objective: To identify the main factors associated with clinical alterations in patients with HIV.

View Article and Find Full Text PDF

Promoted read-through and mutation against pseudouridine-CMC by an evolved reverse transcriptase.

Commun Biol

January 2025

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.

Pseudouridine (Ψ) is an abundant RNA chemical modification that plays critical biological functions. Current Ψ detection methods are limited in identifying Ψs at base-resolution in U-rich sequence contexts, where Ψ occurs frequently. Here we report "Mut-Ψ-seq" that utilizes the classic N-cyclohexyl N'-(2-morpholinoethyl)carbodiimide (CMC) agent and an evolved reverse transcriptase ("RT-1306") for Ψ mapping at base-resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!