Polycaprolactone (PCL) nanofibers have become an ideal material for bone tissue engineering due to a series of advantages. Considering the clinical treatment of bone defects, in addition to meeting the golden standard, PCL based nanofibers also need to be multifunctional to anti-inflammatory, antibacterial properties, and enhance the bone regeneration and repair. Herein, we successfully developed the multifunctional PCL/LIG/ZIF-8 composite nanofibers by loading ZIF-8 on electrospun PCL/lignin (PCL/LIG) nanofibers. The prepared composite nanofibers exhibit fairly good wettability and acceptable degradation rate, as well as excellent antioxidative stress and antibacterial properties originating from the incorporated LIG and loaded ZIF-8. Moreover, owing to the synergistic effect of LIG and ZIF-8, the composite nanofibers present excellent osteogenic differentiation, which can be verified in biomineralization experiments and real-time quantitative polymerase chain reaction. These results indicate that the PCL/LIG/ZIF-8 composite nanofibers, as potential healthcare candidate, have a promising applied in the treatment of bone defects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.06.183DOI Listing

Publication Analysis

Top Keywords

composite nanofibers
20
treatment bone
12
bone defects
12
nanofibers
8
antibacterial properties
8
pcl/lig/zif-8 composite
8
composite
5
bone
5
multifunctional pcl
4
pcl composite
4

Similar Publications

Thermoplastic polyurethane (TPU) fabrics often possess good mechanical, waterproofing, and breathability properties. However, the resistance of TPU to excessive ultraviolet (UV) irradiation is poor and often does not meet the UV resistance requirements of fabrics. Electrospun nanofibers with a side-by-side structure can combine the advantages of different materials.

View Article and Find Full Text PDF

Lithium-sulfur batteries have been recognized as one of the excellent candidates for next-generation energy storage batteries because of their high energy density and low cost and low pollution. However, lithium-sulfur batteries have been challenged by low conductivity, low sulfur utilization, poor cycle life, and the shuttle effect of polysulfides. To address these problems, we report here an independent mixed sulfur host.

View Article and Find Full Text PDF

Cellulose and Cellulose Nanomaterials: Recent Research and Applications in Medical Field.

Comb Chem High Throughput Screen

January 2025

Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Jammu and Kashmir, India.

Cellulose, the most prevalent biopolymer in the world, is comprehensively reviewed. Cellulose occurs in fibrillar patterns with alternating crystalline and amorphous regions. The non-toxic and -friendly nature of cellulose has made it beneficial in many fields, such as pharmaceuticals, biomedical, nanotechnology, etc.

View Article and Find Full Text PDF

A mechanically robust chitosan-based macroporous foam for sustainable Se(IV) elimination from wastewater.

Carbohydr Polym

March 2025

College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; College of Chemical Engineering and Technology, Yantai Nanshan University, Yantai 265713, China. Electronic address:

The contamination of water resources by selenium (Se), particularly in the highly toxic Se(IV) oxidation state, poses a significant environmental and public health concern due to its detrimental impacts on humans and aquatic ecosystems. In this work, we report a novel composite foam (CFC) by incorporating chitosan (CS), cellulose nanofibers (CNF) and iron oxyhydroxide (FeOOH) nanoparticles through a one-pot fabrication process. The CFC foam features a three-dimensional porous structure, conferring both exceptional mechanical strength and superior adsorption performance for Se(IV), with a maximum equilibrium adsorption capacity of 90 mg/g achieved within 3 h.

View Article and Find Full Text PDF

Bacterial cellulose nanofibers-assisted construction of core-shell structured polyaniline aerogel for superior electromagnetic wave absorption.

Carbohydr Polym

March 2025

Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China. Electronic address:

Due to the increasing pollution of electromagnetic waves and the vigorous development of intelligent electronic devices, there is great interest in finding high-quality electromagnetic wave absorbing materials for integrated control boxes (ICBs) that integrate various electronic components. Polyaniline (PANI) is a new type of absorbing material with great potential due to its designable structure, simple preparation process, low density and adjustable conductivity. Herein, we prepared BCNF/PANI nanoscale conductive fibers with core-shell structure by in-situ growth of PANI on the surface of bacterial cellulose nanofibers (BCNF) by oxidative polymerization and further prepared cellulose/polyaniline/polyvinyl alcohol (BCNF/PANI/PVA) composite aerogel absorbing material by a freeze-drying process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!