7-O-(2- (Propylamino)-2-oxoethyl) hesperetin attenuates inflammation and protects against alcoholic liver injury by NLRP12.

Int Immunopharmacol

Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China. Electronic address:

Published: September 2022

Alcoholic liver disease (ALD) is a liver disease caused by long-term heavy drinking. Alcoholic liver injury is a part of alcoholic liver disease. A large number of studies have shown that alcohol metabolism and endotoxin / lipopolysaccharide (LPS) and cycles can cause massive activation of macrophages, leading alcoholic liver injury. Hesperetin is a dihydro-flavonoid extracted from the fruits of Citrus in Rutaceae. It has a variety of pharmacological activities, including antibacterial, anti-inflammatory, antioxidant and so on, but recent studies have shown that hesperetin derivatives have stronger anti-inflammatory effects than hesperetin. In order to improve the anti-inflammatory activity of hesperetin, our group used ethyl-bromoacetate to replace the hydroxyl group at the 7 position of hesperetin to obtain the hesperetin derivative 7-O-(2-(Propylamino)-2-oxoethyl) hesperetin (HD-4d). In this study, we found that HD-4d had hepatoprotective and anti-inflammatory effects on alcoholic liver injury in C57BL/6J mice, and it also had noticeable anti-inflammatory effects in EtOH and LPS-induced RAW264.7 cells. Besides, we found that HD-4d can reduce the expression of inflammatory factors by up-regulating NLRP12 in vivo and in vitro. We found that the expression of NLRP12 was significantly increased in EtOH and LPS-induced RAW264.7 cells compared with the control group. Moreover, the inhibitory effect of HD-4d on inflammation weakened considerably after silencing NLRP12 in RAW264.7 cells. However, when NLRP12 was overexpressed with plasmid pEX-3-NLRP12, the effect of HD-4d on alcohol and LPS induced inflammation was remarkably increased. In addition, further studies indicated that HD-4d inhibited the activation and phosphorylation of the p65 protein by up-regulating NLRP12. In conclusion, HD-4d activated NLRP12 to reduce liver injury and inflammatory response through the NF-кB pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2022.109006DOI Listing

Publication Analysis

Top Keywords

alcoholic liver
24
liver injury
20
liver disease
12
anti-inflammatory effects
12
raw2647 cells
12
hesperetin
8
liver
8
etoh lps-induced
8
lps-induced raw2647
8
up-regulating nlrp12
8

Similar Publications

Importance: Alcohol-associated hepatitis (AH) has high mortality, and rates are increasing among adolescents and young adults (AYAs).

Objective: To define the sex-specific epidemiology of AH in AYAs and the association between female sex and liver-related outcomes after a first presentation of AH.

Design, Setting, And Participants: A retrospective, population-based cohort study of routinely collected health care data held at ICES from Ontario, Canada, was conducted.

View Article and Find Full Text PDF

Liver Cancer Neuroscience: Regulating Liver Tumors via Selective Hepatic Vagotomy.

Methods Protoc

December 2024

Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.

Both the prevalence and mortality of liver cancers continue to rise. Early surgical interventions, including liver transplantation or resection, remain the only curative treatment. Nerves in the periphery influence tumor growth within visceral organs.

View Article and Find Full Text PDF

Background: The global prevalence of non-alcoholic fatty liver disease (NAFLD) is approximately 30%, and the condition can progress to non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Metabolic and bariatric surgery (MBS) has been shown to be effective in treating obesity and related disorders, including NAFLD.

Objective: In this study, comprehensive machine learning was used to identify biomarkers for precise treatment of NAFLD from the perspective of MBS.

View Article and Find Full Text PDF

Background: Insulin resistance (IR) is central to the progression of non-alcoholic fatty liver disease (MAFLD). While aerobic exercise reduces hepatic fat and enhances insulin sensitivity, the specific mechanisms-particularly those involving exosomal pathways-are not fully elucidated.

Method: Exosomes were isolated from 15 MAFLD patients' plasma following the final session of a 12-week aerobic exercise intervention.

View Article and Find Full Text PDF

Regulation of bile acids and their receptor FXR in metabolic diseases.

Front Nutr

December 2024

Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.

High sugar, high-fat diets and unhealthy lifestyles have led to an epidemic of obesity and obesity-related metabolic diseases, seriously placing a huge burden on socio-economic development. A deeper understanding and elucidation of the specific molecular biological mechanisms underlying the onset and development of obesity has become a key to the treatment of metabolic diseases. Recent studies have shown that the changes of bile acid composition are closely linked to the development of metabolic diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!